Estudo da Dinâmica de um Gás Confinado em Placas Paralelas Heterogêneas Utilizando o Modelos

Rosenei Felippe Knackfuss, Leticia Oberoffer Stefenon

Abstract


Neste trabalho, uma versão analítica do método de ordenadas discretas (ADO) é utilizada no desenvolvimento de soluções para problemas de gases rarefeitos confinados por duas placas paralelas infinitas com constituições químicas diferentes, isto é, sem a condição de simetria. A modelagem dos problemas (Fluxo de Poiseuille e Creep Térmico) é realizada a partir do modelo cinético S, derivado da equação linearizada de Boltzmann. A fim de descrever o processo de interação entre o gás e a superfície, utiliza-se o núcleo de Maxwell que apresenta um único coeficiente de acomodação e o núcleo de Cercignani-Lampis definido em termos dos coeficientes de acomodação do momento tangencial e o coeficiente de acomodação da energia cinética. Uma série de resultados são apresentados a fim de estabelecer uma comparação dos efeitos de superfície para os problemas apresentados de Fluxo de Poiseuille
e Creep Térmico.

Keywords


Dinâmica de Gases Rarefeitos, Núcleo de Maxwell, Núcleo de Cercignani-Lampis, Método de Ordenadas Discretas.

References


Bhatnagar, P. L., Gross, E. P. and Krook, M., A Model for Colission Precesses in Gas. I. Small Amplitude Processes in Charged and Neutral One- Component Systems, Physics Review, Vol. 94, pp. 511-525,(1954).

Barichello,L.B.;Siewert,C.E., A discrete-ordinates solution for nongrey model with complete frequency redistribution, JQSRT, vol.62,pp.665-675,1999.

Barichello, L. B., Camargo, M., Rodrigues, P., and Siewert, C. E.; Unified Solutions to Classical Flow Problems Based on the BGK Model, Zeitschrift für Angewandte Mathematik und Physik, vol. 52, pp.

,2001.

Burden,R.L.,Faires,J.D.,Numerical analysis, Brooks/ Cole Publishing Company, Boston, 1997.

Cercignani, C. and Lampis, M., Kinetic Models for Gas-Surface Interaction, Transport Theory and Statistical Physics, Vol. 1, pp. 101-114, (1971).

Cercignani,C.,The Boltzmann Equation and its Applications, Springer-Verlag, New York, (1988).

Dongarra,J.J., Bunch,J.R., Moler,C.B.,Stewart,G.W. LINPACK user’s guide, SIAM, Philadelphia, 1979.

Garcia, R.D.M. an Siewert, C.E., The linearized Boltzmann equation: sound-wave propagation in a rarefied gas, Z. Angew. Math.Phys.,vol.57,pp.94-122,2006.

Gross,E.P. and Jackson, E.A., Kinetic models and the linearized Boltzmann equation. The Phys. of Fluids, vol.2,pp.432-441,(1959).

Karniadakis, G.E.,and Beskok, A., Micro Flows.Springer-Verlag, New York, (2002).

Knackfuss,R.F. and Barichello,L.B.; Surface effects in rarefied gas dynamics: an analysis based on the Cercignani-Lampis boundary condition, European Journal of Mechanics B.Fluids 25,(2006),pp.113-129.

Knackfuss,R.F. e Aseka, I.B.; Fluxo de Poiseuille na Dinâmica de Gases Rarefeitos Baseado no Núcleo BGK,CMNE/CILAMCE 2007, Porto, 13 a 15 de Junho, 2007, APMTAC, Portugal 2007

Lord, R. G. Tangential Momentum Accommodation Coeficients of Rare Gases on Polycrystalline Metal Surfaces, Program Astronautics and Aeronautics, Part I, J. L. Potter, ed., AIAA, New York, Vol. 51, pp. 531-538,(1977).

Porodnov,B. T. Suetin,P. E. Borisov, S. F. and Akinshin,V. D., Experimental Investigation of Rarefied Gas Flow in Different Channels, Journal of Fluid Mechanics, Vol. 64, pp. 417437, (1974).

Scherer, C.S. Prolo Filho, J.F. and Brichello., An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. Z.Angew.Math.Phys.60(2009) 70-115.

Shakov, E.M., Generalization of the Krook kinetic relaxation Equation, Fluid Dynamics, Vol. 3, pp. 142-145, (1968).

Sharipov, F. and Seleznev, V., 1998. Data on Internal Rarefied Gas Flows, Journal Physical and Chemical Reference Data, vol. 27,pp.657.

Sharipov, F., 2002. Application of Cercignani- Lampis Scattering Kernel to Calculations of Rarefied Gas Flows. I. Plane Flow Between two Parallel Plates, European Journal of Mechanics B/Fluids, vol. 21, pp. 113.

Siewert,C.E., Generalized Boundary Conditions for the S-Model Kinetic Equations Basic to Flow in a Plane Channel, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 72, pp. 75-88, (2001).

Siewert, C. E., Kramers problem for a variable collision frequency model.European Journal of Applied Mathematics, vol.12,pp.179-191.

Smith, B.T.,Boyle, J.M.,Dongarra,J.J., Garbow, B.S.,Ikebe,Y., Klema,V.C., and Moler,C.B., Matrix Eigensystem Routines EISPACK Guide.Springer Verlang,Berlin, 1976.

Thomas,L. B. A collection of Some Controlled Surface Thermal Accommodation Coefficient Measurements, in Rarefied Gas Dynamics, C. L. Brundin, ed., Academic Press, New York, pp. 155162,(1967).

Williams, M.M.R., Mathematical methods in particle transport theory, Butterworth, London, 1971.

Williams, M.M.R., A Review of the Rarefied Gas Dynamics Theory Associated with Some Classical Problems in Flow and Heat Transfer, Zeitschrift für Angewandte Mathematik und Physik, Vol. 52, pp. 500-516,(2001).




DOI: https://doi.org/10.5902/2179460X21768

Copyright (c) 2016 Ciência e Natura



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.