SENSITIVITY OF THE AEROSOL BACKGROUND OF THE CCATT-BRAMS MODELLING SYSTEM IN THE SHORT-TERM FORECAST

Authors

  • Gonzalo Andrés Guajardo Ferrada Center for Weather Forecasting and Climate Studies (CPTEC), Brazilian National Institute for Space Research (INPE)
  • Lianet Hernández Pardo Center for Weather Forecasting and Climate Studies (CPTEC), Brazilian National Institute for Space Research (INPE)

DOI:

https://doi.org/10.5902/2179460X20069

Keywords:

Aerosols. Numerical modeling. Biomass burning.

Abstract

The difference between two simulations with different initial conditions in the CCATT-BRAMS modelling system in downward shortwave radiation at surface and cloudiness was studied for the zone corresponding to the state of Rondonia, on September 1 and 2, 2010, month in which was observed the greatest amount of fire outbreaks in the Amazon region. The difference in the initial configuration of the model was settled in activating aerosol background option in one of the simulations and turning it off in the other. No major differences in the fields of both analyzed variables and not much dependence with the amount of particulate matter in the atmosphere were observed. This was proved by calculating the correlation between aerosols and the changes of the variables in both simulations, showing low values (~0.2) within 48 hours studied.

Downloads

Download data is not yet available.

Author Biographies

Gonzalo Andrés Guajardo Ferrada, Center for Weather Forecasting and Climate Studies (CPTEC), Brazilian National Institute for Space Research (INPE)

Group Modeling the Atmosphere and its Interfaces (GMAI), Center for Weather Forecasting and Climate Studies (CPTEC), Brazilian National Institute for Space Research (INPE)

Lianet Hernández Pardo, Center for Weather Forecasting and Climate Studies (CPTEC), Brazilian National Institute for Space Research (INPE)

Center for Weather Forecasting and Climate Studies (CPTEC), Brazilian National Institute for Space Research (INPE)

References

Andreae, M. O. (1991). Biomass burning: its history, use and distribution and its impact on environmental. Global Biomass Burning: Atmospheric, 3-21.

Berge, E. (1993). Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model. Tellus B, 45(1), 1-22.

Cotton, W. R., & Pielke, R. A. (2007). Human Impacts on weather and climate. Cambridge University Press.

Freitas, S. R., Longo, K. M., Dias, M. A., Dias, P. L., Chatfield, R., Prins, E., . . . Recuero, F. S. (2005). Monitoring the transport of biomass burning emissions in South America. Environmental Fluid Mechanics, 5(1-2), 135-167.

Freitas, S. R., Longo, K. M., Silva Dias, M. A., Chatfield, R., Silva Dias, P., Artaxo, P., & Panetta, J. (2009). he Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)–Part 1: Model description and evaluation. Atmospheric Chemistry and Physics, 9(8), 2843-2861.

Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-1.

Kaufman, Y. J. (1995). Remote sensing of direct and indirect aerosol forcing. Aerosol Forcing of Climate, 297-332.

Kondratyev, K., Ivlev, L., Krapivin, V., & Varostos, C. (2006). Atmospheric Aerosol Properties: Formation, Processes and Impacts. Moscow: Springer Science & Business Media.

Longo, K. M., Freitas, S. R., Pirre, M., Marécal, V., Rodrigues, L. F., Panetta, J., . . . Bela, M. (2013). The chemistry CATT–BRAMS model (CCATT–BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research. Model Dev. Discuss, 6, 1173-1222.

Longo, K. M., Freitas, S. R., Setzer, A., Prins, E., Artaxo, P., & Andreae, M. O. (2010). The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)? Part 2: Model sensitivity to the biomass burning inventories. Atmospheric Chemistry and Physics Discussions, 7(3), 8571-8595.

Moreira, D. S., Freitas, S. R., Bonatti, J. P., Mercado, L. M., Rosário, N. M., Longo, K. M., . . . Gatti, L. V. (2013). Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1. 0): applications to numerical weather forecasting and the CO 2 budget in South America. Geoscientific Model Development, 6(4), 1243-1259.

Procopio, A. S., Remer, L. A., Artaxo, P., Kaufman, Y. J., & Holben, B. N. (2003). Modeled spectral optical properties for smoke aerosols in Amazonia. Geophysical Research Letters, 30(24).

Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V., Dunlap, M. R., & Liousse, C. (1998). Physical, chemical and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research: Atmospheres, 103(D24).

Rosenfeld, D. (1999). TRMM observed first direct evidence of smoke from forest fires inhibiting. Geophysical research letters, 26(20), 3105-3108.

Seinfeld, J., & Pandis, S. (1998). Atmospheric Chemistry and Physics - from Air Pollution to Climate Change (2nd Edition ed.). New York: John Wisley & Sons.

Stensrud, D. (2007). Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press.

Tripoli, G. J., & Cotton, W. R. (1982). The Colorado State University three-dimensional cloud/mesoscale model-1982. Part II: An ice phase parameterization. J. Rech. Atmos., 16(4), 295-320.

Walko, R. L., Band, L. E., Baron, J., Kittel, T. G., Lammers, R., Lee, T. J., . . . Vidale, P. L. (2000). Coupled atmosphere-biophysics-hydrology models for environmental modeling. Journal of applied meteorology, 39(6), 931-944.

Wesly, M. L. (1989). Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment, 23(6), 1293-1304.

Published

2016-07-20

How to Cite

Ferrada, G. A. G., & Pardo, L. H. (2016). SENSITIVITY OF THE AEROSOL BACKGROUND OF THE CCATT-BRAMS MODELLING SYSTEM IN THE SHORT-TERM FORECAST. Ciência E Natura, 38, 66–74. https://doi.org/10.5902/2179460X20069