Potencial de Geração de Biogás a Partir da Suplementação de Óleo de Babaçu em Dejetos de Animais

Marluce Lumi, Odorico Konrad, Josmar Almeida Flores, Munique Marder, Lorenzo Zorzi

Abstract


O presente trabalho objetiva avaliar o comportamento e o potencial de geração de biogás através do blend de dejetos de bovinos, suínos e aves quando suplementado com óleo de babaçu. O uso de oleaginosas para fins energéticos em comunidades isoladas que não possuem acesso às redes convencionais de distribuição de energia elétrica está sendo bastante discutido, uma vez que há vasta disponibilidade destas biomassas na Região Amazônica e poucas atividades econômicas sustentáveis em torno da mesma. O estudo foi desenvolvido no Laboratório de Biorreatores do Centro Universitário UNIVATES, sendo a avaliação da geração de biogás realizada através de um dispositivo baseado no deslocamento de fluidos e na equação combinada dos gases ideais, enquanto o teor de metano contido no biogás foi verificado através de um sensor específico para este fim, denominado Advanced Gasmitter. Os resultados obtidos demonstram que a aplicação de óleo de babaçu (OB) em resíduos agrícolas melhora o rendimento de biogás e de metano, sendo que o tratamento suplementado com 7,5% de OB o qual obteve melhor desempenho.


Keywords


Energia renovável, biogás, digestão anaeróbia, óleo de babaçu, desenvolvimento sustentável.

References


Anderson, G.K., Yang, G. (1992). Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environment Research, v. 64, pp. 53–59.

Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technology, v. 110, pp. 63-70.

Dalmau, J., Comas, J., Rodrıíguez-Roda, I., Pagilla, K., Steyer, J.P. (2010). Model development and simulation for predicting risk of foaming in anaerobic digestion systems. Bioresource Technology, v.101 (12), pp. 4306-4314.

Fernández, A. Sánchez, X. (2005). Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem. Eng. J., 26, pp. 22–28.

Fountoulakis, M.S., Petousi, I., Manios, T. (2010). Co-digestion of sewage sludge with glycerine to boost biogas production. Waste Management, v. 30, pp. 1849 – 1853.

Gelegenis, J.; Georgakakis, D.; Angelidaki, I.; Christopoulou, N.; Goumenaki, M. (2007). Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure. Applied Energy, v.84, pp.646-663.

Kivaisi, A.K., Mtila, M. Production of biogas from water hyacinth (Eichhornia crassipes) (Mart) (Solms) in a two stage bioreactor (1998). World J. Microbiol. Technol., V. 14, pp. 125–131.

Konrad, O., Koch, F.F., Lumi, M., Tonetto, J., Bezama, A. (2014). Potential of biogas production from swine manure supplemented with glycerine waste. Eng. Agríc. Jaboticabal, v.34, n.5, pp.844-853.

Ma, J., Van Wambeke, M., Carballa, M., Verstraete, W. (2007). Improvement of the anaerobic treatment of potato processing wastewater in a UASB reactor by codigestion with glycerol. Biotechnology Lett., v. 30, pp. 861–867.

Mata-Alvarez, J., Dosta, J., Macé, S., Astals, S. Codigestion of solid wastes: a review of its uses and perspectives including modelling. (2011). Crit. Rev. Biotechnol., v.31 (2), pp. 99-111.

Mata-Alvarez, J., Macé, S., Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. (2000). Bioresource Technology, v. 74 (1), pp. 3-16.

Moeller, L., Lehnig, M., Schenk, J., Zehnsdorf, A. Foam formation in biogas plants caused by anaerobic digestion of sugar beet. (2015). Bioresource Technology, v.178 (0), pp.270-277.

Mora-Naranajo, N., Meima, J.A., Haarstrick, A., Hempel, D.C. Modelling and experimental investigation of environmental influences on the acetate and methane formation in solid waste. (2004). Waste Management, v. 24, pp. 9.763-773.

Mshandete, A., Kivaisi, M., Rubindamayugi, M., Mattiasson, B. Anaerobic batch co-digestion of sisal pulp and fish wastes. (2004). Bioresource Technology, v.95, pp. 19-24.

Neves, L., Oliveira, R., Alves, M.M. Co-digestion of cow manure, food waste and intermittent input of fat. (2009). Bioresource Technology, v. 100, pp. 1957–1962.

Pommier, S., Chenu, D., Quintard, M., Lefebvre, X. A logistic model for the prediction of the influence of water on the solid waste methanization in landills. (2007). Biotechnology and Bioengineering, v, 97(3), pp. 473-482.

Razaviarani, V., Buchanan, I.D., Malik, S., Katalambula, H. Pilot scale anaerobic co-digestion of municipal wastewater sludge with biodiesel waste glycerine. (2013). Bioresource Technology, v. 133, pp. 206-212.

Saidu, M., Yuzir, A., Salim, M.R., Salmiati., Azman, S., Abdullah, N. Biological pre-treated oil palm mesocarp fibre with cattle manure for biogas production by anaerobic digestion during acclimatization phase. (2014). International Biodeterioration & Biodegradation, v.95, pp.189-194.

Silvestre, G., Fernández, G., Bonmati, A. Addition of crude glycerine as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co-digestion. (2015). Bioresource Technology, v. 193, pp. 377-385.

Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., Zhu, T. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. (2014). Waste Management v. 34, pp. 1025–1034.

Zhang, C., Xiao, G., Peng, L., Su, H.,Tan, T. The anaerobic co-digestion of food waste and cattle manure. (2013). Bioresource Technoogy, v. 129, pp. 170–176.




DOI: https://doi.org/10.5902/2179460X19369

Copyright (c)



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.