A FERRADURA DE MEDIDA POSITIVA

Autores

  • Anderson Luiz Maciel UFSM
  • Alessandra Kreutz UFSM

DOI:

https://doi.org/10.5902/2179460X12131

Palavras-chave:

Sistemas dinâmicos, ferradura de Smale, conjunto de Cantor

Resumo

O presente artigo visa estabelecer as bases para a construção da ferradura de Smale com medida positiva, originalmente apresentada por Rufus Bowen em um artigo de 1975.

Para isso, iniciaremos com a construção da clássica ferradura de Stephen Smale, apresentada por Smale em 1967.

Considerando uma figura D em forma de estádio no plano, que contém um quadrado Q, faremos uma contração e expansão de D a fim de obter uma figura em forma de ferradura.

As operações de contração e expansão definem uma função f : D → D. Definimos então a ferradura de Smale como o conjunto Λ dos pontos q ∈ Q ⊂ D que permanecem em Q após iterações futuras e passadas da aplicação f . Esse conjunto Λ é um conjunto de Cantor.

A ferradura de Bowen, ou seja, a ferradura de Smale de medida positiva, é um conjunto que duplica a ferradura de Smale.

Downloads

Não há dados estatísticos.

Biografia do Autor

Anderson Luiz Maciel, UFSM

Doutor em Matemática Aplicada pela USP

Área de concentração: sistemas dinâmicos

Professor Adjunto do Departamento de Matemática

 

Alessandra Kreutz, UFSM

Acadêmica do curso de licenciatura em matemática da UFSM.

Downloads

Publicado

2014-02-15

Como Citar

Maciel, A. L., & Kreutz, A. (2014). A FERRADURA DE MEDIDA POSITIVA. Ciência E Natura, 36(1), 018–029. https://doi.org/10.5902/2179460X12131

Edição

Seção

Matemática