Oxidação fotocatalítica da clozapina empregando TiO2 imobilizado em poliestireno: efeito dos parâmetros operacionais e modelagem via redes neurais
DOI:
https://doi.org/10.5902/2236117038236Palavras-chave:
Ecotoxicidade, Fármaco, Fotocatálise heterogênea, Psicotrópico, Radiação ultravioletaResumo
Nos últimos anos, a fotocatálise heterogênea através de semicondutores demonstrou ser eficiente para o tratamento de águas residuárias contendo poluentes orgânicos, como os fármacos. Dentre alguns fotocatalisadores, o dióxido de titânio (TiO2) tem sido estudado e aplicado para esta finalidade. À vista disso, neste trabalho investigou-se a degradação fotocatalítica do antipsicótico clozapina sob irradiação ultravioleta, mediante emprego de TiO2 suspenso e suportado em material de poliestireno. Alguns parâmetros experimentais foram avaliados através de um planejamento fatorial 23; verificando-se uma maior taxa de degradação do composto ao utilizar 0,15 g do catalisador imobilizado, [H2O2] de 340 mg L-1 e pH 9, após 6 h de tratamento. Para tal obteve-se degradações superiores a 93,48% e um modelo de dois estágios foi proposto para descrever a cinética reacional. Uma rede neural artificial foi utilizada para modelar o processo fotocatalítico e determinar a importância das variáveis operacionais. Também ficou estabelecido que o emprego deste tratamento resultou em 78,30% de remoção da demanda química de oxigênio (DQO) nas condições otimizadas. Além disso, a partir de testes de reutilização foi verificada a estabilidade do suporte de TiO2 após 5 ciclos consecutivos. No entanto, por meio de ensaios toxicológicos com Escherichia coli e Salmonella enteritidis observou-se que os produtos gerados através da reação geram produtos mais tóxicos que o composto original.
Downloads
Referências
ADYANI, S. M.; GHORBANI, M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials. Journal of Rare Earths, v. 36, n. 1, p. 72-85, 2018.
ALALM, M. G., TAWFIK, A., & OOKAWARA, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. Journal of Environmental Chemical Engineering, v. 4, n. 2, 1929-1937, 2016.
ALI, T.; TRIPATHI, P.; AZAM, A.; RAZA, W.; AHMED, A. S.; AHMED, A.; MUNEER, M. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express, v. 4, p. 015-022, 2017.
ANTONOPOULOU, M.; VLASTOS, D.; KONSTANTINOU, I. Photocatalytic degradation of pentachlorophenol by N-F-TiO2: identification of intermediates, mechanism involved, genotoxicity and ecotoxicity evaluation. Photochemical and Photobiological Sciences, v. 14, p. 520-527, 2015.
ΑNTONOPOULOU, M.; KONSTANTINOU, I. Photocatalytic degradation and mineralization of tramadol pharmaceutical in aqueous TiO2 suspensions: evaluation of kinetics, mechanisms and ecotoxicity. Applied Catalysis A: General, v. 515, 136-143, 2016.
APHA – AMERICAN PUBLIC HEALTH ASSOCIATION. Standard Methods for the Examination of Water and Wastewater, 22nd ed. Washington, DC: American Public Health Association, 2012.
AREEROB, Y.; CHO, J. Y.; JANG, W. K.; OH, W.-C. Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@ SiO2 nanocomposites. Ultrasonics Sonochemistry, v. 41, p. 267-278, 2018.
BARROS A. L.; DOMINGOS A. A. Q.; FECHINE P. B. A.; KEUKELEIRE D.; NASCIMENTO R. F. PET as support material for TiO2 in advanced oxidation processes. Journal of Applied Polymer Science, v. 131, n. 9, p. 40175- 40183, 2014.
BOCZKAJ, G.; FERNANDES, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chemical Engineering Journal, v. 320, p. 608-633, 2017.
BORGES, S. D. S.; XAVIER, L. P. D. S.; SILVA, A. C. D.; AQUINO, S. F. D. Imobilização de dióxido de titânio em diferentes materiais suporte para o emprego em fotocatálise heterogênea. Química Nova, p. 1-9, 2016.
BRASIL. Agência Estadual de Meio Ambiente de Pernambuco (CPRH). CPRH n. 2.001: Controle de carga orgânica em efluentes. Recife, PE, 2003.
CALZA, P.; SAKKAS, V. A.; VILLIOTI, A.; MASSOLINO, C.; BOTI, V.; PELIZZETTI, E.; ALBANIS, T. Multivariate experimental design for the photocatalytic degradation of imipramine: determination of the reaction pathway and identification of intermediate products. Applied Catalysis B: Environmental, v. 84, n. 3-4, p. 379-388, 2018.
CHAN, K. H.; CHU, W. Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, v. 51, n. 4, p. 305-311, 2003.
COLLADO, N.; RODRIGUEZ-MOZAZ, S.; GROS, M.; RUBIROLA, A.; BARCELÓ, D.; COMAS, J.; RODRIGUEZ-RODA, I.; BUTTIGLIERI G. Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environmental Pollution, v. 185, p. 202-212, 2014.
DIMITRAKOPOULOU, D.; RETHEMIOTAKI, I.; FRONTISTIS, Z.; XEKOUKOULOTAKIS, N. P.; VENIERI, D.; MANTZAVINOS, D. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. Journal of Environmental Management, 98, p. 168-174, 2012.
ELMOLLA, E. S.; CHAUDHURI, M.; ELTOUKHY, M. M. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. Journal of hazardous materials, v. 179, n. 1-3, p. 127-134, 2010.
GEYER, B.; LORENZ, G.; KANDELBAUER, A. Recycling of poly (ethylene terephthalate) - A review focusing on chemical methods. Express Polymer Letters, v. 10, n. 7, p. 559-586, 2016.
HAN, F.; KAMBALA, V. S. R.; DHARMARAJAN, R.; LIU, Y.; NAIDU, R. Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts. Environmental Technology & Innovation, v. 12, p. 27-42, 2018.
HASSANI, A.; KHATAEE, A.; FATHINIA, M.; KARACA, S. Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: Nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm. Process Safety and Environmental Protection, v. 116, p. 365-376, 2018.
HASSANI, A.; KHATAEE, A.; KARACA, S. Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling. Journal of Molecular Catalysis A: Chemical, v. 409, p. 149-161, 2015.
JALLOULI, N.; PASTRANA-MARTÍNEZ, L. M.; RIBEIRO, A. R.; MOREIRA, N. F. F.; FARIA, J. L., HENTATI, O.; SILVA, A. M. T.; KSIBI, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chemical Engineering Journal, v. 334, p. 976-984, 2018.
KHAKI, M. R. D.; SHAFEEYAN, M. S.; RAMAN, A. A. A.; DAUD, W. M. A. W. Application of doped photocatalysts for organic pollutant degradation - A review. Journal of Environmental Management, v. 198, 78-94, 2017.
KHAN, S.; QAZI, I. A.; HASHMI, I.; ALI AWAN, M.; ZAIDI, N. U. S. S. Synthesis of silver-doped titanium TiO2 powder-coated surfaces and its ability to inactivate pseudomonas aeruginosa and bacillus subtilis. Journal of Nanomaterials, p. 1-8, 2013.
KHATAEE, A. R.; KASIRI, M. B. Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis. Journal of Molecular Catalysis A: Chemical, v. 331, n. 1-2, p. 86-100, 2010.
KOLTSAKIDOU, Α.; ANTONOPOULOU, M.; EVGENIDOU, E.; KONSTANTINOU, I.; LAMBROPOULOU, D. A. Cytarabine degradation by simulated solar assisted photocatalysis using TiO2. Chemical Engineering Journal, v. 316, p. 823-831, 2017.
LIN, L.; WANG, H.; JIANG, W.; MKAOUAR, A. R.; XU, P. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. Journal of Hazardous Materials, v. 333, p. 162-168, 2017.
LOSTE, J.; LOPEZ-CUESTA, J. M.; BILLON, L.; GARAY, H.; SAVE, M. Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Progress in Polymer Science, v. 89, p. 133-158, 2018.
MARCELINO, R. B.; AMORIM, C. C.; RATOVA, M.; DELFOUR-PEYRETHON, B.; KELLY, P. Novel and versatile tio2 thin films on pet for photocatalytic removal of contaminants of emerging concern from water. Chemical Engineering Journal, v. 370, n. 15, p. 1251-1261, 2019.
MATILAINEN, A.; SILLANPÄÄ, M. Review - Removal of natural organic matter from drinking water byadvanced oxidation processes. Chemosphere, v. 80, p. 351-365, 2010.
MATONGO, S.; BIRUNGI, G.; MOODLEY, B.; NDUNGU, P. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere, v. 134, p. 133-140, 2015a.
MATONGO, S.; BIRUNGI, G.; MOODLEY, B.; NDUNGU, P. Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environmental Science and Pollution Research, v. 22, n. 13, p. 10298-10308, 2015b.
MONSALVO, V. M.; MCDONALD, J. A.; KHAN, S. J.; LE-CLECH, P. Removal of trace organics by anaerobic membrane bioreactors. Water Research, v. 49, p. 103-112, 2014.
MONTEIRO, R. T.; SANTANA, R. M. R.; SILVA, A. M. R. B.; LUCENA, A. L. A.; ZAIDAN, L. E. M. C.; SILVA, V. L.; NAPOLEÃO, D. C. Degradation of the pharmaceuticals nimesulide and ibuprofen using photo-Fenton process: toxicity studies, kinetic modeling and use of artificial neural networks. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 22, n. 3, p. 01-21, 2018.
NAPOLEÃO, D. C.; ZAIDAN, L. E. M. C.; RODRÍGUEZ-DÍAZ, J. M.; SANTANA, R. M. R.; MONTENEGRO, M. C. B. S. M.; ARAÚJO, A. N.; BENACHOUR, M.; SILVA, V. L. Use of the photo-Fenton process to discover the degradation of drugs present in water from the Wastewater Treatment Plants of the pharmaceutical industry. Afinidad, v. 75, n. 581, p. 19-27, 2018.
OBLAK, R.; KETE, M.; ŠTANGAR, U. L.; TASBIHI, M. Alternative support materials for titania photocatalyst towards degradation of organic pollutants. Journal of Water Process Engineering, v. 23, p. 142-150, 2018.
RAD, T. S.; KHATAEE, A.; KAYAN, B.; KALDERIS, D.; AKAY, S. Synthesis of pumice-TiO2 nanoflakes for sonocatalytic degradation of famotidine. Journal of Cleaner Production, v. 202, p. 853-862, 2018.
SALEIRO, G. T.; CARDOSO, S. L.; TOLEDO, R.; HOLANDA, J. N. Evaluation of the crystalline phases of supported titanium dioxide in red ceramic. Cerâmica, v. 56, n. 338, p. 162-167, 2010.
SANTANA, R. M. R.; NASCIMENTO, G. E.; NAPOLEÃO, D. C.; DUARTE, M. M. M. B. Degradation and kinetic study of Reactive blue BF-5G and Remazol red RB 133% dyes using Fenton and photo-Fenton process. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 21, n. 2, p. 104-118, 2017.
SANTANA, R. M. R.; NASCIMENTO, G. E.; SILVA, P. K. A.; LUCENA, A. L. A.; PROCÓPIO, T. F.; NAPOLEÃO, T. H.; DUARTE, M. M. B.; NAPOELÃO, D. C. Kinetic and ecotoxicological evaluation of the direct orange 26 dye degradation by Fenton and solar photo-Fenton processes. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 22, n. 5, p. 1-20, 2018.
SANTOS M. M. M.; DUARTE M. M. M. B.; NASCIMENTO G. E.; SOUZA N. B. G.; ROCHA O. R. S. Use of TiO2 photocatalyst supported on residues of polystyrene packaging and its applicability on the removal of food dyes. Environmental Technology, v. 40, n. 12, p. 1494-1507, 2018.
SINGH, S.; MAHALINGAM, H.; SINGH, P. K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Applied Catalysis A: General, v. 462, p. 178-195, 2013.
SUI, Y.; LIU, Q.; JIANG, T.; GUO, Y. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings. Applied Surface Science, v. 428, p. 1149-1158, 2018.
TALINLI, I.; ANDERSON, G. K. Interference of hydrogen peroxide on the standard COD test. Water Research, v. 26, n. 1, p. 107-110, 1992.
THIND, P. S.; KUMARI, D.; JOHN, S. TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. Journal of Environmental Chemical Engineering, v. 6, n. 3, p. 3602-3609, 2018.
TRAWIŃSKI, J.; SKIBIŃSKI, R. Rapid degradation of clozapine by heterogeneous photocatalysis. Comparison with direct photolysis, kinetics, identification of transformation products and scavenger study. Science of The Total Environment, v. 665, p. 557-567, 2019.
TRAWIŃSKI, J.; SKIBIŃSKI, R.; SZYMAŃSKI, P. Investigation of the photolysis and TiO2, SrTiO3, H2O2-mediated photocatalysis of an antipsychotic drug loxapine–Evaluation of kinetics, identification of photoproducts, and in silico estimation of properties. Chemosphere, v. 204, p. 1-10, 2018.
VELÁZQUEZ-MARTÍNEZ, S.; SILVA-MARTÍNEZ, S.; PINEDA-ARELLANO, C. A.; JIMÉNEZ-GONZÁLEZ, A.; SALGADO-TRÁNSITO, I.; MORALES-PÉREZ, A. A.; PEÑA-CRUZ, M. I. Modified sol-gel/hydrothermal method for the synthesis of microsized TiO2 and iron-doped TiO2, its characterization and solar photocatalytic activity for an azo dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, v. 359, p. 93-101, 2018.
VILLOTA, N.; LOMAS, J. M.; CAMARERO, L. M. Kinetic modelling of water-color changes in a photo-Fenton system applied to oxidate paracetamol. Journal of Photochemistry and Photobiology A: Chemistry, v. 356, p. 573-579, 2018.
XING, X.; DU, Z.; ZHUANG, J.; WANG, D. Removal of ciprofloxacin from water by nitrogen doped TiO2 immobilized on glass spheres: Rapid screening of degradation products. Journal of Photochemistry and Photobiology A: Chemistry, v. 359, 23-32, 2018.
YANG, J. H.; HAN, Y. S.; CHOY, J. H. TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films, v. 495, n. 1-2, 266-271, 2006.
ZAIDAN, L. E. M. C.; PINHEIRO, R. B.; SANTANA, R. M. R.; CHARAMBA, L. V. C.; NAPOLEÃO, D. C.; SILVA, V. L. Evaluation of efficiency of advanced oxidative process in degradation of 2-4 dichlorophenol employing UV-C radiation reactor. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 21, n. 2, p. 147-157, 2017.
ZHANG, Y.; XIN, Q.; CONG, Y.; WANG, Q.; JIANG, B. Application of TiO2 nanotubes with pulsed plasma for phenol degradation. Chemical Engineering Journal, v. 215, p. 261-268, 2013.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.