Toxicidade de cádmio em plantas

Auteurs-es

DOI :

https://doi.org/10.5902/2236117015970

Mots-clés :

Fitorremediação, Cádmio, Glutationa, Fitoquelatina.

Résumé

Fitorremediação é o uso de plantas na descontaminação de ambientes poluídos, como por exemplo, solo e água, principalmente com metais pesados e poluentes orgânicos, reduzindo seus teores a níveis seguros à saúde humana, além de contribuir na melhoria das características físicas, químicas e biológicas destas áreas. Dentre as várias formas de contaminação do meio ambiente resultante das diversas atividades industriais e agrícolas, a contaminação de águas com metais pesados tem sido uma das que tem trazido mais preocupações aos pesquisadores e aos órgãos governamentais envolvidos no controle de poluição e, dentre os metais pesados o cádmio (Cd) é um dos metais pesados mais estudados em razão de sua elevada toxidez tanto para plantas como para animais. Em resposta ao estresse causado pelo Cd, as plantas podem desenvolver vários mecanismos de tolerância, os quais podem operar algumas vezes como mecanismos aditivos. Dois desses possíveis mecanismos pode ser a ativação de um sistema antioxidativo e, ou modificação do metabolismo do enxofre (S), especialmente de glutationa, um essencial substrato para a biossíntese de fitoquelatinas (FTs). Estes peptídeos ricos em cisteína, estrutura geral (g-Glu-Cis)n –Gli (n=2-11) e sintetizados enzimaticamente a partir da glutationa, são capazes de ligar íons de metais pesados via grupos tiolados (SH). A glutationa, sintetizada pela ação de duas enzimas: a sintetase da g-glutamilcisteína e a sintetase da glutationa, pode apresentar-se sob duas formas: reduzida (GSH) e oxidada (GSSG). Existem numerosos trabalhos relacionados ao acúmulo de fitoquelatinas com a desintoxicação de íons de metais pesados e a homeostase celular. Rios e represas estão sendo contaminados com metais pesados e outras formas de contaminação em função dos despejos urbanos e industriais. Parte da eliminação e, ou detecção da contaminação por metais pesados podem ser feitos com a utilização de plantas aquáticas como Eichhornia crassipes (Mart.) Solms e Salvinia auriculata (Aubl.).

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Licielo Romero Vieira, Universidade Federal do Pampa, São Gabriel, RS

Acadêmico do Curso de Bacharelado em Gestão Ambiental na Universidade Federal do Pampa - UNIPAMPA - Campus São Gabriel.

Emerson Silveira Corrêa, Universidade Federal do Pampa, São Gabriel, RS

Acadêmico do Curso de Bacharelado em Gestão Ambiental na Universidade Federal do Pampa - UNIPAMPA - Campus São Gabriel.

Beatriz Stoll Moraes, Universidade Federal do Pampa, São Gabriel, RS

Engenheira Química pela Universidade de Rio Grande (FURG); Mestre em Recursos Hídricos e Saneamento Ambiental pela Universidade Federal do Rio Grande do Sul (UFRGS) e atualmente é docente na Universidade Federal do Pampa - UNIPAMPA - Campus São Gabriel

Marivane Vestena Rossato, Universidade Federal de Santa Maria, Santa Maria, RS

Bacharel em Ciências Contábeis pela Universidade Federal de Santa Maria (UFSM); Mestre em Engenharia de Produção pela Universidade Federal de Santa Maria (UFSM); Doutora em Economia Aplicada pela Universidade Federal de Viçosa (UFV) e atualmente é professora na Universidade Federal de Santa Maria 9UFSM).

Silvane Vestena, Universidade Federal do Pampa, São Gabriel, RS

Graduação em Ciências Biológicas (Licenciatura) pela Universidade Federal de Santa Maria (UFSM); Mestre em Botânica pela Universidade Federal do Rio Grande do Sul (UFRGS); Doutora em Fisiologia Vegetal pela Universidade Federal de Viçosa (UFV) e atualmente é docente pela Universidade Federal do Pampa (UNIPAMPA) Campus São Gabriel.

Références

ALVAREZ, E.A.; MÓCHON, M.C.; SÁNCHEZ, J.C.J.; RODRÍGUEZ, M.T. Heavy metals extractable forms is sludge from wastewater treatment plants. Chemosphere, v.47, p.765-775, 2002.

ALVES, E., CARDOSO, L.R., SCAVRONI, J.L.R., FERREIRA, L.C., BOARO, C.S.F., CATANEO, A.C. Avaliações fisiológicas e bioquímicas de plantas de aguapé (Eichhornia crassipes) cultivadas com níveis excessivos de nutrientes. Planta Daninha, v.21, p.27-35, 2003.

ANDRADE, S.A.L. de; JORGE, R.A.; SILVEIRA, A.P.D. da. Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi. Scientia Agricola, v.62, n.4, p.389-394, 2005.

AXTELL, N. R.; STERNBERG, S.P.; CLAUSSEN, K. Lead and nickel removal using microspora and Lemna minor. Bioresource Technology, v.89, p.41-48, 2003.

BARRETO, R.; CHARUDATTAN, R.; POMELLA, A.; HANADA, R. Biological control of neotropical aquatic weeds with fungi. Crop Protection, v.19, p.697-703, 2000.

BENAVIDES, M.P.; GALLEGO, S.M.; TOMARO, M.L. Cadmium toxicity. Brazilian Journal of Plant Physiology, v.17, p.21-34, 2005.

BIZZARO, G.V.; MEURER, E.J.; TATSCH, F.R.P. Teor de cádmio em fertilizantes fosfatados comercializados no Brasil. Ciência Rural, v.38, n.1, p.247-250, 2008.

BOR, M.; OZDEMIR, F.; TURKAN, I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, v.164, p.77-84, 2003.

BRASIL. CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução CONAMA no 357 - Classificação das águas, de 17 de março de 2005, Diário Oficial da União, Brasília, DF, 31 mar. 2005. Seção 1.

COBBET, C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, v.123, p.825-832. 2000.

CARDOSO, P.F.; MOLINA, S.M.G.; PEREIRA, G.J.G.; VITÓRIA, A.P; AZEVEDO, R.A. Response of rice inbred lines to cadmium exposure. Journal Plant Nutrition, v.25, p.927-944, 2002.

DAS, P.; SAMANTARAY, S.; ROUT, G.R. Studies on cadmium toxicity in plants: a review. Environmental Pollution, v.98, p.29-36, 1997.

DELGADO, M.; BIGERIEGO, M.; GUARDIOLA, E. Uptake of Zn, Cr and Cd by water hyacinths. Water Research, 27: 269-272, 1993.

DELHAIZE, E.; JACKSON, P.J.; LUJAN, L.D.; ROBINSON, N.J. Poly (-glutamylcisteinyl) glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiology, v.89, p.700-706, 1989.

DÍAZ, J.; BERNAL, A.; POMAR, F.; MERINO, F. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Science, v.161, p.179-188, 2001.

DUCIÉ, T.; POLLE, A. Transport and detoxifications of manganese and copper in plants. Brazilian Society of Plant Physiology, v.17, n.1, p.103-112, 2005.

EBBS, S.; LAU., I.; AHNER, B.; KOCHIAN, L. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta, v.214, p.635-640, 2002.

EPA – Environmental health Protection Agency. Federal Register Part V. Water Qual. Crit. Doc., 45: 79318-79380, 1980.

ERNST, W.H.O.; VERKLEIJ, J.A.C.; SCHAT, H. Metal tolerance in plants. Acta Botanica Neerlandica, v.41, p.229-248, 1992.

ESHDAT, Y.; HOLLAND, D.; FALTIN, Z.; BEM-HAYGIM, G. Plant glutathione peroxidases. Physiologia Plantarum, v.100, p.234-240, 1997.

FAO/WHO, Sixteenth Report of the joint FAO/WHO. Expert Commitee on Food Additives. WHO: Genebra, 1972, WHO Tech. Rep. Ser., 505.

FORNAZIER, R.F.; FERREIRA, R.R.; VITÓRIA, A.P.; MOLINA, S.M.G.;

LEA, P.J. Effects of cadmium on antioxidant enzymes activities in sugar cane. Biologia Plantarum, v.45, p.91-97, 2002.

FOYER, C,H.; LOPEZ-DELGADO, H.; DAT, J.F.; SCOTT, I.M. Hydrogen peroxide-and glutathione-associated mechanism of acclimatory stress tolerance and signalling. Physiologia Plantarum, v.100, p.241-254, 1997.

GRILL, E., LÖFFLER, S., WINNACKER, E.L., ZENK, M.H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academic Sciences (USA), v.86, p.6838-6842, 1989.

GRILL, E.; WINNACKER, E.L.; ZENK, M.H. Phytochelatins, a class heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academic Sciences (USA), v.84, p.439-443, 1987.

GUANGYU, Y.; VIRARAGHAVAN, T. Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource Technology, v.78, p.243-249, 2002.

GUELFI, A.; AZEVEDO, R. A; LEA, P.J. MOLINA, S.M.G. Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach. Journal of General Applied Microbiology, v.49, p.63-73, 2003.

HAAG-KERWER, A.; SCHÄFER, H.J.; HEISS, S.; WALTER, C.; RAUSCH, T. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, v.50, p.1827-1835, 1999.

HALL, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, v.53, p.1-11, 2002.

HASAN, S.H.; TALAT, M.; R.A.I, S. Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichhornia crassipes). Bioresource Technology, v.98, p.918-928, 2007.

KAVAMURA, V.N.; ESPOSITO, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, v.28, n.1, p.61-69, 2010.

KHAN, A.G.; KUEK, C.; CHAUDHRY, T.M.; KHOO, C.S.; HAYES, N.J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, v.41, p.197-207, 2000.

KERBAUY, G.B. Fisiologia vegetal. 2. ed. Rio de Janeiro: Guanabara Koogan, 2008.

KISSMANN, K.G. Plantas infestantes e nocivas. São Paulo: FASF. 2. ed., 1997.

KLUMPP, A. BAUER, K.; FRANZ-GERSTEIN, C.; MENEZES, M. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil). Environment International, v,28, p.165-171, 2002.

KNECHT, J.A.; VAN DILLEN, M.; KOEVOETS, P.L.M.; SCHAT, H.; VERKLEIJ, J.A.C.; ERNST, W.H.O. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiology, v.104, p.255-261, 1994.

LASAT, M. M. Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, v.31, p.109-120, 2002.

LIU, Y.; WANG, X.; ZENG, G.; QU, D.; GU, J.; ZHOU, M.; CHAI, L. Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere, v.69, p.99-107, 2007.

MALAVOLTA, E. Fertilizantes e seu impacto ambiental, micronutrientes e metais pesados: mitos, mistificação e fatos. São Paulo, ProduQuímica, 1994.

MALM, O.; PFEIFFER, W.C.; FISZMAN, M.; AZCUE, J.M. Transport and availability of heavy-metal in the Paraiba do Sul – Guandu River System, Rio de Janeiro State, Brazil. Science of the Total Environment, v.75, p.201-209, 1988.

MANAHAN, S. E. Environmental Chemistry. 7. ed. Lewis Publishers, Boca Raton, USA. 1999. 898p.

MARRS, K. The functions and regulation of glutathione S-transferase in plants. Annual Review of Plant Physiology and Plant Molecular Biology, v.47, p.553-575, 1996.

MENDES, P. L. A.; MEYER, S. T.; NORONHA, I.A.S.; GOMES, S.M.A.; SANTOS, M.H. Alterações morfológicas em Eichhornia crassipes (aguapé) (Mart.) Solms-Laubach (Pontederiaceae), exposta a elevadas concentrações de mercúrio. Pesticidas: Revista Ecotoxicilógica e Meio Ambiente, v.19, p.29-38, 2009.

MENDONZA-CÓZATL. D.; LOZA-TAVERA, H.; HERNÁNDEZ-NAVARRO, A.; MORENO-SÁNCHEZ, R. Súlfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plant. FEMS Microbiology Reviews, v.29, p.653-671, 2005.

METWALLY, A.; FINKEMEIER, I.; GEORGI, M.; DIETZ, K.J. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, v.132, p.272-281, 2003.

MILONE, M.A.; SGHERRI, C.; CLIJSTERS, H.; NAVARI-IZZO, F. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany, v.50, p.265-274, 2003.

MISHRA,V.K.; TRIPATHI, B.D. Concurrent removal and accumation for heavy metals by the three aquatic macrophytes. Bioresource Techology, v.99, p.7091-7097, 2008.

NAGALAKSHMI, N.; PRASAD, M.N.V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, v.160, p.291-299, 2001.

NOCTOR, G.; GOMEZ, L.; VANCKER, H. & FOYER, C.H. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal Experimental of Botany, v.53, p.1283-1304, 2002.

OLGUÍN, E.J.; SÁNCHEZ-GALVÁN, G.; PÉREZ-PÉREZ, T. Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air and Soil Pollution, v.181, p.135-147, 2007.

OLIVEIRA, J.A. Efeito do cádmio sobre a absorção, a distribuição e a assimilação de enxofre em aguapé (Eichhornia crassipes (Mart.) Solms) e salvínia (Salvinia auriculata Aubl.). Tese de Doutorado, UFV. 1998. 93p.

OLIVEIRA, J.A.; CAMBRAIA, J.; OLIVA, M.A.; JORDÃO, C.P. Absorção e acúmulo de cádmio e seus efeitos sobre o crescimento relativo de plantas de salvínia e aguapé. Revista Brasileira de Fisiologia Vegetal, v.13, n.3, p.329-341, 2001.

OUTRIDGE, P.M.; HUTCHINSON, T.C. Effects of cadmium on integration and resource allocation in the clonal fern Salvinia molesta. Oecologia, v.84, p.215-223, 1990.

PAIVA, H.N.; CARVALHO, J.G.; SIQUEIRA, J.O. Efeito da aplicação de cádmio sobre o teor de nutrientes em mudas de cedro (Cedrela fissilis Vell.). Ciência Florestal, v.11, p.153-162, 2001.

PANDEY, N.; SHARMA, C.P. Effect of heavy Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science, v.163, p.753-758, 2002.

PAQUIN, D.G.; CAMPBELL, S.; LI, Q.X. Phytoremediation in subtropical Hawaii a review of over 100 plant species. Remediation Journal, v.14, n.2, p.127-139, 2004.

PEREIRA, G.J.G.; MOLINA, S.M.G.; LEA, P.J.; AZEVEDO, R.A. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil, v.239, p.123-132, 2002.

PETRUCIO, M.M.; ESTEVES, F.A. Influence of photoperiod on the uptake of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Revista Brasileira de Biologia, v.60, p. 373-379, 2000.

PILON-SMITS, E.A.H.; ZHU, Y.L.; SEARS, T.; TERRY, N. Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiologia Plantarum, v.110, p.455-460, 2000.

PILON-SMITS, E. Phytoremediation. Annual Review Plant Biology, v. 56, p. 15-39, 2005.

PIO, M.C.S. da; SOUZA, K.S. dos; SANTANA, G.P. Capacidade da Lemna aequinoctialis para acumular metais pesados de água contaminada. Acta Amazônica, v.43, n.2, p.203-210, 2013.

PRASAD, M.N.V.; MALEC, P.; WALOSZEK, A.; BOJKO, M.; STRZALKA, K. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, v.161, p.881-889, 2001.

RAMOS, I.; ESTEBAN, E.; LUCENA, J.J.; GÁRATE, A. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, v.162, p.761-767, 2002.

RANGSAYATORN, N.; UPATHAM, E.S.; KRUATRACHUE, M., POKETHITIYOOK, P.; LANZA, G.R. Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environmental Pollution, v.119, p.45-53, 2002.

REESE, R.N.; WINGE, D.R. Sulfate stabilization of the cadmium-glutamyl peptide complex of Schizasaccharomyces pombe. Journal of Biological Chemistry, v.263, p.12832-12835, 1988.

ROBACH, F.G.; THIEBAUT, G.; TREMOLIERES, M.; MULLER, S. A reference system for continental running waters: plant communities as bioindicators of increasing eutrophication in alkaline and acidic waters in north-east France. Hydrobiologia, v.340, p.67-76, 1996.

RODRÍGUEZ-SERRANO, M., ROMERO-PUERTAS, M.C., ZABALZA, A., CORPAS, F.J., GÓMEZ, M., DEL RÍO, L.A., SANDALIO, L.M. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environmental, v.29, p.1532-1544, 2006.

ROMERO-PUERTAS, M.C.; RODRÍGUEZ-SERRANO, M.; CORPAS, F.J.; GÓMEZ, M.; DEL RÍO, L.A.; SANDALIO, L.M. Cadmium induced subcellular accumulation of O2•− and H2O2 in pea leaves. Plant Cell Environmental, v.27, p.1122–1134, 2004.

ROMERO-PUERTAS, M.C.; CORPAS, F.J.; RODRÍGUEZ-SERRANO, M.; GÓMEZ, M.; DEL RÍO, L.A.; SANDALIO, L.M. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal Plant Physiology, v.164, p.1346-1357, 2007.

SALT, D.E.; PRINCE, R.C.; PICKERING, I.J.; RASKIN, I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, v.109, p.1427-1433, 1995.

SANITÁ DI TOPPI, L.; GABRIELLI, R. Response to cadmium in higher plants. Environmental of Experimental Botany, v.41, p.105-130, 1999.

SCHAT, H.; LLUGANY, M.; BERNHARD, R. Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: TERRY, N.;

BANNUELOS, G. Phytorem. Cont. Soil Water. CRC Press LLC, p.171-188, 2000.

SCHMIDT, A.; JAGER, K. Open questions about sulfur metabolism in plants. Annual Review of Plant Physiology, v.43, p.325-349, 1992.

SCHÜTZENDÜBEL, A.; SCHWANZ, P.; TEICHMANN, T.; GROSS. K.; LANGENFELD- HEYSER, R.; GODBOLD, D.L.; POLLE, A. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiology, v.127, p.887-898, 2001.

SCHÜTZENDÜBEL, A.; POLLE, A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, v.53, p.1351-1365, 2002.

SEN, A.K. & BHATTACHARYYA, M. Studies of uptake and toxic effects of Ni (II) on Salvinia natans. Water, Air and Soil Pollution, v.78, p.141-152, 1994.

SHAH, K.; KUMAR, R.G.; VERMA, S.; DUBEY, R.S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, v.161, p.1135-1144, 2001.

SILVA, M.S.R.; RAMOS, J.F.; PINTO, A.G.N. Metais de transição nos sedimentos de igarapés de Manaus-AM. Acta Limnologia Brasiliensia, v.11, p.89-100, 1999.

SINGH, S.; EAPEN, S.; SOUZA, S.F.D. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere, v.62, p.233-246, 2006.

SOLTAN, M.E.; RASHED, M.N. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research, v.7, p.321-334, 2003.

SOUZA, V.L.; SILVA, D.C. da; SANTANA, K.B.; MIELKE, M.S.; ALMEIDA, A-A.F. de; MANGABEIRA, P.A.O.; ROCHA, E.A. Efeitos do cádmio na anatomia e na fotossíntese de duas macrófitas aquáticas. Acta Botânica Brasílica, v.23, n.2, p.343-354, 2009.

STOHS, S.J.; BAGCHI, D. Oxidative mechanismes in the toxicity of metal ions. Free Rad Biolo Med, v.18, p.321-326, 1995.

STOLT, J.P.; SNELLER, F.E.C.; BRYNGELSSON, T.; LUNDBOR, T.; SCHAT, H. Phytochelatin and cadmium accumulation in wheat. Environmental of Experimental Botany, v.49, p.21-28, 2003.

TAIZ, L. & ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre: Artmed, 2009. 719 p.

TSUJI, N.; HIRAYANAGI, N.; IWABE, O.; NAMBA, T.; TAGAWA, M.; MIYAMOTO, S.; MIYASAKA, H.; TAKAGI, M.; HIRATA, K.; MIYAMOTO, K. Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry, v.62, p.453-459, 2003.

VECCHIA, F.D.; LA ROCCA, N.; MORO, I.; DE FAVERI, S.; ANDREOLI, C.; RASCIO, N. Morfhogenetic ultrastructural and physiological damages suffered by submerged leaves of Elodea Canadensis exposed to cadmium. Plant Science, v.168, p.329-338, 2005.

VESTENA, S. Efeito do cádmio sobre a atividade de enzimas antioxidativas e sobre o metabolismo de glutationa em aguapé (Eichhornia crassipes (Mart.) Solms) e salvínia (Salvinia auriculata Aubl.). Tese de Doutorado, UFV. 2004. 114p.

VESTENA, S.; CAMBRAIA, J.; RIBEIRO, C.; OLIVA, M.O.; OLIVEIRA, J.A. Cadmium accumulation by water hyacinth and salvinia under different sulfur concentrations. Journal of the Brazilian Society of Ecotoxicology, v.2, n.3, p.1-6, 2007.

VESTENA, S.; CAMBRAIA, J.; RIBEIRO, C.; OLIVEIRA, J.A.; OLIVA, M.O. Cadmium-induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Brazilian Society of Plant Physiology, v.23, n.2, p.131-139, 2011.

VITÓRIA, A.P.; LEA, P.J. & AZEVEDO, R.A. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, v.57, p.: 710-715, 2001.

VÖGELI-LANGE, R. & WAGNER, G.J. Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Science, v.114, p.11-18, 1996.

WU, S.; ZU, Y.; WU, M. Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla. Plant Science, v.160, p.551-562, 2001.

XIAO, X.; CHEN, T.; AN, Z.; LEI, M.; HUANG, Z.; LIAO, X.; LIU, Y. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation. Journal of Environmental Sciences, v.20, n.1, p.62-67, 2008.

ZEMAN, C., RICH, M.; ROSE, J. World water resources: Trends, challenges, and solutions. Reviews in Environmental and Science Bio/Technology, v.5, p.333-346, 2006.

WOLFF, G.; ASSIS, L. R.; PEREIRA, G. C.; CARVALHO, J. G.; CASTRO, E. M. Efeito da toxicidade do zinco em folhas de Salvinia auriculata cultivadas em solução nutritiva. Planta Daninha, v.27, n.1, p.133-137, 2009.

Téléchargements

Publié-e

2015-04-01

Comment citer

Vieira, L. R., Corrêa, E. S., Moraes, B. S., Rossato, M. V., & Vestena, S. (2015). Toxicidade de cádmio em plantas. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 19(2), 1574–1588. https://doi.org/10.5902/2236117015970

Numéro

Rubrique

ENVIRONMENTAL THECNOLOGY

Articles les plus lus du,de la,des même-s auteur-e-s

1 2 > >>