Estimación de altura de variedades de caña de azúcar mediante Vehículo Aéreo No Tripulado (UAV) e integración con imágenes satelitales
DOI:
https://doi.org/10.5902/2236499465070Palabras clave:
UAV, Remote Sensing, Structure from Motion, Canopy HeightResumen
El objetivo de este trabajo fue estimar la altura del dosel de tres variedades de caña de azúcar en diferentes estados fenológicos, utilizando datos de un UAV y evaluar su relación con dos índices de vegetación (VI) (NDVI y EVI) a diferentes resoluciones espaciales (3m, 10m). y 30m). Para calcular los índices se utilizaron imágenes de los satélites PlanetScope, Sentinel-2 y Landsat 8, adquiridas lo más cerca posible de la fecha del vuelo con el UAV. La altura estimada para cada parcela se obtuvo restando el MDS y el MDT construidos a partir de las imágenes RGB del UAV, utilizando la técnica SfM. Los promedios de cada altura estimada se compararon con los promedios obtenidos en campo, con el fin de verificar la precisión del modelo. Se calculó un análisis de correlación de Pearson y el coeficiente de Determinación (R²) entre las alturas estimadas y los IV. Los promedios de altura estimados y los medidos en campo fueron diferentes (p<0.05), subestimando generalmente el modelo la altura. Sin embargo, los modelos de superficie de plantación pudieron retratar la variabilidad espacial de la parcela. Se recomienda utilizar GCP para reducir los errores de estimación. En cuanto a los índices, la resolución espacial no tuvo influencia en el análisis de correlación, presentando el NDVI valores superiores al EVI, con excepción del área A. Sin embargo, todos los valores de ambos coeficientes estuvieron por debajo de 0,5 para todas las áreas. Aún así, es necesario un análisis temporal para comprender mejor la relación entre la altura y los IV. El potencial de los datos de los vehículos aéreos no tripulados para la gestión zonal debería abordarse en futuros estudios.
Descargas
Citas
AASEN, H., et al. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, v. 108, p. 245-259. Oct. 2015.
ABDEL‐RAHMAN, E. M.; AHMED, F. B. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature. International Journal of Remote Sensing, v. 29, n. 13, p. 3753-3767, 14 jun. 2008.
ADAMI, M. et al. Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil. Sustainability, v. 4, n. 4, p. 574-585, 2 apr. 2012.
AYOADE, J. O. Introdução à climatologia para os trópicos. 4. ed. Rio de Janeiro: Bertrand Brasil, 1996.
BÉGUÉ, A. et al. Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, v. 31, n. 20, p. 5391-5407, oct. 2010.
BENDIG, J.; BOLTEN, A.; BARETH, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability. Photogrammetrie - Fernerkundung - Geoinformation, v. 2013, n. 6, p.551-562, dec. 2013.
BENDIG, J. et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal Of Applied Earth Observation And Geoinformation. v. 39, p.79-87, jul. 2015.
BIAN, J. et al. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sensing. v. 11, n. 3, p. 267-284, jan. 2019.
BREUNIG, F. M. et al. Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. International Journal Of Applied Earth Observation And Geoinformation. v. 85, p.102004-102019,mar. 2020a.
BREUNIG, F. M., et al. Assessing the Effect of Spatial Resolution on the Delineation of Management Zones for Smallholder Farming in Southern Brazil. Remote Sensing Applications: Society and Environment. , v. 19, p. 100325, aug. 2020b.
CHU, T. et al. Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images. Remote Sensing, v. 9, n. 9, p.923-947, sep. 2017.
CONAB - Companhia Nacional De Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar- Safra 2019/20. 4. ed. Brasília: Estúdio Nous, 2020. Available in: https://www.conab.gov.br/. Access: Oct. 17th 2020.
DAMIAN, J. M. et al. Monitoring variability in cash-crop yield caused by previous cultivation of a cover crop under a no-tillage system. Computers And Electronics In Agriculture, v. 142, p. 607-621, nov. 2017.
DAMIAN, J. M. et al. Applying the NDVI from satellite images in delimiting management zones for annual crops. Scientia Agricola, v. 77, n. 1, p. 1-11, 2020.
DUBREUIL, V., et al. The types of annual climates in Brazil: an application of the classification of Köppen from 1961 to 2015. Confins, n. 37, p.1-20, jan. 2018. In Portuguese.
ELARAB, M. et al. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal Of Applied Earth Observation And Geoinformation, v. 43, p.32-42, apr. 2015.
EMPLASA. Região Metropolitana de Ribeirão Preto: estudos técnicos. 2016. Avaliable in: emplasa.sp.gov.br/Cms_Data/Contents/Emplasa/Media/publicacoes/RMRP_estudos_tecnicos.pdf. Acess: Nov. 30th 2020.
GALVÃO, L. S. et al. Crop Type Discrimination Using Hyperspectral Data: Advances and Perspectives, in Biophysical and Biochemical Characterization and Plant Species Studies, ed. by Alfredo Huete Prasad S. Thenkabail, John G. Lyon, 2nd ed. (Boca Raton, FL: CRC Press, 2018), p. 183–211. <https://doi.org/10.1201/9780429431180>
GRÜNER, E.; ASTOR, T.; WACHENDORF, M. Biomass Prediction of Heterogeneous Temperate Grasslands Using an SfM Approach Based on UAV Imaging, Agronomy, v. 9, n. 2, p.54-70, jan. 2019.
HOFFMANN, H. et al. Crop water stress maps for an entire growing season from visible and thermal UAV imagery, Biogeosciences, v. 13, n. 24, p.6545-6563, dec. 2016.
HUETE, A.et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing Of Environment, v. 83, n. 1-2, p. 195-213, mar. 2002.
HUNT E. R.; DAUGHTRY, C. S. T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal Of Remote Sensing, v. 39, n. 15-16, p.5345-5376, dec. 2017.
IEA - INSTITUTO DE ECONOMIA AGRÍCOLA. Estatísticas da Produção Agrícola: Período de 2017 à 2018. 2018. Available at: http://ciagri.iea.sp.gov.br/nia1/subjetiva.aspx?cod_sis=1&idioma=1 Access: Jan.23rd. 2020.
IVUSHKIN, K. et al. UAV based soil salinity assessment of cropland, Geoderma, v. 338, p.502-512, mar. 2019.
JUSTICE, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, v.36, n.4, p.1228-1249, jul. 1998.
KROSS, A., et al. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, International Journal of Applied Earth Observation and Geoinformation, v. 34, p. 235-248, feb. 2015.
LEBLON, B.; GRANBERG, H.; CHARLAND, S.D. Shadowing effects on SPOT-HRV and high spectral resolution reflectances in Christmas tree plantations. International Journal Of Remote Sensing, v. 17, n. 2, p. 277-289, jan. 1996.
LIU, T. et al. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural And Forest Meteorology, v. 252, p.144-154, jan. 2018.
LUNA, I.; LOBO, A. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: a pilot study in Nicaragua. Remote Sensing, v. 8, n. 6, p. 500-518, jun. 2016.
MALAMBO, L. et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery, International Journal of Applied Earth Observation and Geoinformation, v. 64, fev. 2018.
MARAFON, A. C. Análise Quantitativa de Crescimento em Cana de- açúcar: uma introdução ao procedimento prático. Aracaju: Embrapa Tabuleiros Costeiros, 29 p. (Documentos / Embrapa Tabuleiros Costeiros, ISSN 1678-1953; 168), 2012. Available at: http://www.cpatc.embrapa.br/publicacoes_2012/doc_168.pdf. Access: Jul.15rd. 2020
MULLA, D. J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps, Biosystems Engineering, v. 114, p. 358-371, apr. 2013.
NEUHÄUSER M. Wilcoxon–Mann–Whitney Test. In: LOVRIC, M. (eds) International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer, 2011.
PATURKAR, A.; GUPTA, G.S.; BAILEY, D. Non-destructive and cost-effective 3D plant growth monitoring system in outdoor conditions. Multimedia Tools And Applications. v. 79, n. 47-48, p. 34955-34971, apr. 2020.
PAYERO, J. O.; NEALE, C. M. U.; WRIGHT, J. L. Comparison Of Eleven Vegetation Indices For Estimating Plant Height Of Alfalfa And Grass, Applied Engineering in Agriculture, v. 20, p. 385-393, 2004.
QUEBRAJO, L. et al. Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet, Biosystems Engineering, v. 165, p.77-87, jan. 2018.
ROSSI, M. Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal, v.1. 118 p., 2017. (Inclui Mapas)
ROUSE, J.Wet al. Monitoring vegetation systems in the great plains with ERTS. In: Earth Resources Technology Satellite-1 Symposium, 3., Washington, D.C., 1973. Proceedings. Washington, D.C.: NASA. Goddart Space Flight Center, 1973. v.1, p.309-317. (NASA SP-351).
RUDORFF, B. F. T., et al. Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data. Remote Sensing, v. 2, n. 4, p. 1057-1076, apr. 2010.
RUIZ, J.J et al. Evaluating the accuracy of DEM generation algorithms from UAV imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2013, 40, 333–337.
SANCHES, G. M. et al. The potential for RGB images obtained using Unmanned Aerial Vehicle to assess and predict yield in sugarcane fields, International Journal Of Remote Sensing, v. 39, n. 15-16, p.5402-5414, mar. 2018.
SANTESTEBAN, L. G. et al. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard, Agricultural Water Management, v. 183, p.49-59, mar. 2017.
SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete samples). Biometrika, 52 (3–4), p. 591–611, 1965.
SOFONIA, J. et al. Monitoring sugarcane growth response to varying nitrogen application rates: A comparison of UAV SLAM LiDAR and photogrammetry. International Journal Of Applied Earth Observation And Geoinformation, v. 82, p.101878-101893, oct. 2019.
SOUZA, C. H. W. et al. Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images. Computers and Electronics in Agriculture, v. 143, p.49-56, dec. 2017a.
SOUZA, C. H. W.de et al. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. International Journal of Remote Sensing, v. 38, n. 8-10, p.2218-2230, jan. 2017b.
TODD, S. W.; HOFFER R. M.; MILCHUNAS D. G. Biomass estimation on grazed and ungrazed rangelands using spectral indices, International Journal of Remote Sensing, p. 427-438, jan. 1998.
TUCKER, C. J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing Of Environment, n. 8, p. 127-150, 1979.
TURNER, D.; LUCIEER, A.; WATSON, C. An automated technique for generating georectified mosaics from Ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sensing, v. 4, 1392–1410, 2012.
WILLKOMM, M.; BOLTEN, A.; BARETH, G. Non-destructive monitoring of rice by hyperspectral in-field spectrometry and UAV-based remote sensing: Case study of field-grown rice in north Rhine-Westphalia, Germany, ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 1071–1077, 2016.
YU, D. et al. Improvement of sugarcane yield estimation by assimilating UAV-derived plant height observations. European Journal of Agronomy. V. 121(126159), p. 1-16, 2020.
ZHANG, N.; WANG, M.; WANG, N. Precision agriculture—a worldwide overview, Computers And Electronics In Agriculture, v. 36, n. 2-3, p.113-132, nov. 2002.
ZHOU, X et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery, ISPRS Journal Of Photogrammetry And Remote Sensing, v. 130, p.246-255, aug. 2017.
ZHU, W. et al. Estimating Maize Above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales. Remote Sensing, v. 11, n. 22, p.2678-2700, nov. 2019.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Geografia Ensino & Pesquisa
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Geografia – Ensino & Pesquisa retendrá el copyright de los trabajos publicados. Los derechos tienen referencia con la publicación del trabajo en cualquier parte del mundo, incluyendo los derechos a Las renovaciones, expansiones y diseminaciones de la contribución, así como otros derechos subsidiarios. Los autores tienen permiso para la publicación de la contribución en otra medio, materia impresa o digital, en portugués o en otra traducción, desde que los créditos tenidos sean dados a la Revista Geografia – Ensino & Pesquisa.