Estimativa da altura de variedades de cana-de-açúcar usando um Veículo Aéreo Não Tripulado (VANT) e integração com imagens de satélite

Autores

DOI:

https://doi.org/10.5902/2236499465070

Palavras-chave:

VANT, Sensoriamento remoto, Estrutura do movimento, Altura do dossel

Resumo

O objetivo deste trabalho foi estimar a altura do dossel de três variedades de cana-de-açúcar em diferentes estágios fenológicos, utilizando dados de um VANT e avaliar sua relação com dois índices de vegetação (IVs) (NDVI e EVI) em diferentes resoluções espaciais (3m, 10m e 30m). Para o calcular os índices foram utilizadas imagens dos satélites PlanetScope, Sentinel-2 e Landsat 8, adquiridas o mais próximo possível da data do voo com o VANT. A altura estimada para cada talhão foi obtida pela subtração entre o MDS e MDT construídos a partir das imagens RGB do VANT, por meio da técnica SfM. As médias de cada altura estimada foram comparadas com médias obtidas em campo, a fim de se verificar a acurácia do modelo. Uma análise de correlação de Pearson e o coeficiente de Determinação (R²) foram calculados entre as alturas estimadas e os IVs. As médias de altura estimada e medidas em campo foram diferentes (p<0,05), com o modelo, geralmente, subestimando a altura. Todavia, os modelos de superfície da plantação conseguiram retratar a variabilidade espacial do talhão. É recomendado o uso de GCPs para reduzir os erros na estimativa. Em relação aos índices, a resolução espacial não exerceu influência na análise de correlação, com NDVI apresentando valores maiores que o EVI, com exceção da área A. Contudo, todos os valores, de ambos os coeficientes ficaram abaixo de 0,5 para todas as áreas. Ainda assim, se faz necessária uma análise temporal para compreender melhor a relação entre altura e os IVs. O potencial dos dados de UAV para o gerenciamento zonal deve ser abordado em estudos futuros.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gabriela Zoli Simões, National Institute for Space Research

Possui graduação em Engenharia Ambiental pela Universidade Tecnológica Federal do Paraná (2018). Atualmente mestranda em Sensoriamento Remoto pelo Instituto Nacional de Pesquisas Espaciais (INPE). Tem experiência na área de Ciências Ambientais, com ênfase em Engenharia Ambiental e Sensoriamento Remoto.

Hermann Johann Heinrich Kux, National Institute for Space Research

Possui graduação em Geografia pela Universidade de São Paulo (1970) e doutorado em Geologia - Universität Freiburg (1976). Atualmente é pesquisador titular iii do Instituto Nacional de Pesquisas Espaciais. Tem experiência na área de Geociências, com ênfase em Sensoriamento Remoto, atuando principalmente nos seguintes temas: sensoriamento remoto, classificação orientada a objeto, uso da terra, radar de abertura sintética (sar) e planejamento urbano. A partir de 2016, avaliação de câmeras operando no infravermelho termal embarcadas em drones, para estudos ambientais.

Fábio Marcelo Breunig, Universidade Federal de Santa Maria

Possui graduação em Geografia pela Universidade Federal de Santa Maria (2006), Mestrado e Doutorado em Sensoriamento Remoto pelo Instituto Nacional de Pesquisas Espaciais (2008 e 2011, respectivamente). Possui Pós-doutorado e detém desde 2015 bolsa de produtividade em pesquisa (PQ) do CNPq. Atualmente é chefe do departamento de Engenharia Florestal, coordenador de projetos de pesquisa e extensão. Suas atividades de pesquisa e ensino estão relacionadas a Sensoriamento Remoto do Ambiente (agricultura, floresta, água), SIG, Análise de Erros e Modelagem Ambiental.

Luiz Henrique Pereira, IDGeo - Geointeligência Agrícola

Geógrafo formando pela UNESP (2007), com Mestrado (2010) e Doutorado (2016) em Análise Ambiental e Geoprocessamento pelo Programa de Pós-Graduação em Geografia/Instituto de Geociências e Ciências Exatas/UNESP, Rio Claro. Desenvolve pesquisas aplicadas ao planejamento e gestão territorial agrícola, com foco em modelagem geoespacial dinâmica (Agricultura de Precisão, desenvolvimento vegetal de culturas agrícolas, avaliação de produtividade em sistemas agrícolas, e Perdas de solo e água em bacias hidrográficas); e monitoramento de safra em usinas canavieiras. Atua nas áreas de Geoprocessamento, Sensoriamento Remoto e Governança de Dados Geoespaciais. Experiência como coordenador de geomática e projetos de tecnologia agrícola no setor de Bioenergia. É Consultor FAO/ONU (Brasília-DF) em geoprocessamento e sensoriamento remoto para agricultura e recursos hídricos, e atualmente é Gestor de Pesquisa, Desenvolvimento e Inovação na IDGeo ? Inteligência em Dados Geográficos (Piracicaba-SP), conduzindo projetos nos temas Modelagem de sistemas agrícolas e ambientais, Monitoramento Remoto de canaviais.

Referências

AASEN, H., et al. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, v. 108, p. 245-259. Oct. 2015.

ABDEL‐RAHMAN, E. M.; AHMED, F. B. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature. International Journal of Remote Sensing, v. 29, n. 13, p. 3753-3767, 14 jun. 2008.

ADAMI, M. et al. Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil. Sustainability, v. 4, n. 4, p. 574-585, 2 apr. 2012.

AYOADE, J. O. Introdução à climatologia para os trópicos. 4. ed. Rio de Janeiro: Bertrand Brasil, 1996.

BÉGUÉ, A. et al. Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, v. 31, n. 20, p. 5391-5407, oct. 2010.

BENDIG, J.; BOLTEN, A.; BARETH, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability. Photogrammetrie - Fernerkundung - Geoinformation, v. 2013, n. 6, p.551-562, dec. 2013.

BENDIG, J. et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal Of Applied Earth Observation And Geoinformation. v. 39, p.79-87, jul. 2015.

BIAN, J. et al. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sensing. v. 11, n. 3, p. 267-284, jan. 2019.

BREUNIG, F. M. et al. Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. International Journal Of Applied Earth Observation And Geoinformation. v. 85, p.102004-102019,mar. 2020a.

BREUNIG, F. M., et al. Assessing the Effect of Spatial Resolution on the Delineation of Management Zones for Smallholder Farming in Southern Brazil. Remote Sensing Applications: Society and Environment. , v. 19, p. 100325, aug. 2020b.

CHU, T. et al. Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images. Remote Sensing, v. 9, n. 9, p.923-947, sep. 2017.

CONAB - Companhia Nacional De Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar- Safra 2019/20. 4. ed. Brasília: Estúdio Nous, 2020. Available in: https://www.conab.gov.br/. Access: Oct. 17th 2020.

DAMIAN, J. M. et al. Monitoring variability in cash-crop yield caused by previous cultivation of a cover crop under a no-tillage system. Computers And Electronics In Agriculture, v. 142, p. 607-621, nov. 2017.

DAMIAN, J. M. et al. Applying the NDVI from satellite images in delimiting management zones for annual crops. Scientia Agricola, v. 77, n. 1, p. 1-11, 2020.

DUBREUIL, V., et al. The types of annual climates in Brazil: an application of the classification of Köppen from 1961 to 2015. Confins, n. 37, p.1-20, jan. 2018. In Portuguese.

ELARAB, M. et al. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal Of Applied Earth Observation And Geoinformation, v. 43, p.32-42, apr. 2015.

EMPLASA. Região Metropolitana de Ribeirão Preto: estudos técnicos. 2016. Avaliable in: emplasa.sp.gov.br/Cms_Data/Contents/Emplasa/Media/publicacoes/RMRP_estudos_tecnicos.pdf. Acess: Nov. 30th 2020.

GALVÃO, L. S. et al. Crop Type Discrimination Using Hyperspectral Data: Advances and Perspectives, in Biophysical and Biochemical Characterization and Plant Species Studies, ed. by Alfredo Huete Prasad S. Thenkabail, John G. Lyon, 2nd ed. (Boca Raton, FL: CRC Press, 2018), p. 183–211. <https://doi.org/10.1201/9780429431180>

GRÜNER, E.; ASTOR, T.; WACHENDORF, M. Biomass Prediction of Heterogeneous Temperate Grasslands Using an SfM Approach Based on UAV Imaging, Agronomy, v. 9, n. 2, p.54-70, jan. 2019.

HOFFMANN, H. et al. Crop water stress maps for an entire growing season from visible and thermal UAV imagery, Biogeosciences, v. 13, n. 24, p.6545-6563, dec. 2016.

HUETE, A.et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing Of Environment, v. 83, n. 1-2, p. 195-213, mar. 2002.

HUNT E. R.; DAUGHTRY, C. S. T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal Of Remote Sensing, v. 39, n. 15-16, p.5345-5376, dec. 2017.

IEA - INSTITUTO DE ECONOMIA AGRÍCOLA. Estatísticas da Produção Agrícola: Período de 2017 à 2018. 2018. Available at: http://ciagri.iea.sp.gov.br/nia1/subjetiva.aspx?cod_sis=1&idioma=1 Access: Jan.23rd. 2020.

IVUSHKIN, K. et al. UAV based soil salinity assessment of cropland, Geoderma, v. 338, p.502-512, mar. 2019.

JUSTICE, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, v.36, n.4, p.1228-1249, jul. 1998.

KROSS, A., et al. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, International Journal of Applied Earth Observation and Geoinformation, v. 34, p. 235-248, feb. 2015.

LEBLON, B.; GRANBERG, H.; CHARLAND, S.D. Shadowing effects on SPOT-HRV and high spectral resolution reflectances in Christmas tree plantations. International Journal Of Remote Sensing, v. 17, n. 2, p. 277-289, jan. 1996.

LIU, T. et al. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural And Forest Meteorology, v. 252, p.144-154, jan. 2018.

LUNA, I.; LOBO, A. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: a pilot study in Nicaragua. Remote Sensing, v. 8, n. 6, p. 500-518, jun. 2016.

MALAMBO, L. et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery, International Journal of Applied Earth Observation and Geoinformation, v. 64, fev. 2018.

MARAFON, A. C. Análise Quantitativa de Crescimento em Cana de- açúcar: uma introdução ao procedimento prático. Aracaju: Embrapa Tabuleiros Costeiros, 29 p. (Documentos / Embrapa Tabuleiros Costeiros, ISSN 1678-1953; 168), 2012. Available at: http://www.cpatc.embrapa.br/publicacoes_2012/doc_168.pdf. Access: Jul.15rd. 2020

MULLA, D. J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps, Biosystems Engineering, v. 114, p. 358-371, apr. 2013.

NEUHÄUSER M. Wilcoxon–Mann–Whitney Test. In: LOVRIC, M. (eds) International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer, 2011.

PATURKAR, A.; GUPTA, G.S.; BAILEY, D. Non-destructive and cost-effective 3D plant growth monitoring system in outdoor conditions. Multimedia Tools And Applications. v. 79, n. 47-48, p. 34955-34971, apr. 2020.

PAYERO, J. O.; NEALE, C. M. U.; WRIGHT, J. L. Comparison Of Eleven Vegetation Indices For Estimating Plant Height Of Alfalfa And Grass, Applied Engineering in Agriculture, v. 20, p. 385-393, 2004.

QUEBRAJO, L. et al. Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet, Biosystems Engineering, v. 165, p.77-87, jan. 2018.

ROSSI, M. Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal, v.1. 118 p., 2017. (Inclui Mapas)

ROUSE, J.Wet al. Monitoring vegetation systems in the great plains with ERTS. In: Earth Resources Technology Satellite-1 Symposium, 3., Washington, D.C., 1973. Proceedings. Washington, D.C.: NASA. Goddart Space Flight Center, 1973. v.1, p.309-317. (NASA SP-351).

RUDORFF, B. F. T., et al. Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data. Remote Sensing, v. 2, n. 4, p. 1057-1076, apr. 2010.

RUIZ, J.J et al. Evaluating the accuracy of DEM generation algorithms from UAV imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2013, 40, 333–337.

SANCHES, G. M. et al. The potential for RGB images obtained using Unmanned Aerial Vehicle to assess and predict yield in sugarcane fields, International Journal Of Remote Sensing, v. 39, n. 15-16, p.5402-5414, mar. 2018.

SANTESTEBAN, L. G. et al. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard, Agricultural Water Management, v. 183, p.49-59, mar. 2017.

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete samples). Biometrika, 52 (3–4), p. 591–611, 1965.

SOFONIA, J. et al. Monitoring sugarcane growth response to varying nitrogen application rates: A comparison of UAV SLAM LiDAR and photogrammetry. International Journal Of Applied Earth Observation And Geoinformation, v. 82, p.101878-101893, oct. 2019.

SOUZA, C. H. W. et al. Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images. Computers and Electronics in Agriculture, v. 143, p.49-56, dec. 2017a.

SOUZA, C. H. W.de et al. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. International Journal of Remote Sensing, v. 38, n. 8-10, p.2218-2230, jan. 2017b.

TODD, S. W.; HOFFER R. M.; MILCHUNAS D. G. Biomass estimation on grazed and ungrazed rangelands using spectral indices, International Journal of Remote Sensing, p. 427-438, jan. 1998.

TUCKER, C. J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing Of Environment, n. 8, p. 127-150, 1979.

TURNER, D.; LUCIEER, A.; WATSON, C. An automated technique for generating georectified mosaics from Ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sensing, v. 4, 1392–1410, 2012.

WILLKOMM, M.; BOLTEN, A.; BARETH, G. Non-destructive monitoring of rice by hyperspectral in-field spectrometry and UAV-based remote sensing: Case study of field-grown rice in north Rhine-Westphalia, Germany, ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 1071–1077, 2016.

YU, D. et al. Improvement of sugarcane yield estimation by assimilating UAV-derived plant height observations. European Journal of Agronomy. V. 121(126159), p. 1-16, 2020.

ZHANG, N.; WANG, M.; WANG, N. Precision agriculture—a worldwide overview, Computers And Electronics In Agriculture, v. 36, n. 2-3, p.113-132, nov. 2002.

ZHOU, X et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery, ISPRS Journal Of Photogrammetry And Remote Sensing, v. 130, p.246-255, aug. 2017.

ZHU, W. et al. Estimating Maize Above-Ground Biomass Using 3D Point Clouds of Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales. Remote Sensing, v. 11, n. 22, p.2678-2700, nov. 2019.

Downloads

Publicado

2023-11-17

Como Citar

Simões, G. Z., Kux, H. J. H., Breunig, F. M., & Pereira, L. H. (2023). Estimativa da altura de variedades de cana-de-açúcar usando um Veículo Aéreo Não Tripulado (VANT) e integração com imagens de satélite. Geografia Ensino & Pesquisa, 27, e65070. https://doi.org/10.5902/2236499465070

Edição

Seção

Geoinformação e Sensoriamento Remoto em Geografia