Tamanho de sementes e inoculação de <i>Azospirillum brasilense</i> Ab-V5 e Ab-V6 influenciam a germinação e o vigor inicial de plântulas de <i>Acacia mearnsii</i>
DOI:
https://doi.org/10.5902/1980509885546Palavras-chave:
Acácia negra, RPCP, Fitormônios, Vigor de sementes, Índices de vigorResumo
Acacia mearnsii é uma espécie arbórea australiana cultivada comercialmente na África e na América do Sul para produção taninos e madeira. A espécie apresenta tamanho variável de sementes, o que pode impactar a germinação e o crescimento inicial das mudas. Já a inoculação com Azospirillum brasilense é conhecida por melhorar o crescimento de diversas culturas. Entretanto, existem poucos estudos sobre os efeitos da inoculação de A. brasilense na germinação e no crescimento inicial de espécies florestais. O presente estudo avaliou a influência do tamanho das sementes e da inoculação de A. brasilense Ab-V5 e Ab-V6 na germinação e no crescimento inicial de A. mearnsii. Sementes pequenas reduziram o tempo médio de germinação (TMG) em 5,2% e o tempo para 50% de germinação (T50) em 23,8% em comparação às sementes grandes. Por outro lado, as mudas originadas de sementes grandes apresentaram índice de velocidade de germinação (IVG) 18,6% superior às originadas de sementes pequenas. A inoculação com Azospirillum brasilense aumentou a porcentagem de germinação em 20,9%, a velocidade de germinação em 91,8%, o comprimento da raízes (CR) em 35,8% e a massa fresca da raízes em 20,5%. Além disso, diminuiu o TMG em 8,2% e o T50 em 37,6%. A combinação de sementes grandes e de inoculação com A. brasilense aumentou o CR em cerca de 50% e o IVG em 62,1%. Assim, o uso da inoculação de A. brasilense favorece a germinação e o vigor de plântulas de A. mearnsii, mostrando-se uma estratégia promissora para obtenção de mudas mais uniformes em viveiros florestais.
Downloads
Referências
ABDUL-BAKI, A.A.; ANDERSON, J.D. Vigor determination in soybean seed by multiple criteria. Crop science, Madison, v. 13, n. 6, p. 630-633, 1973.
AGEFLOR - ASSOCIAÇÃO GAÚCHA DE EMPRESAS FLORESTAIS (Brazil). O setor de base florestal no Rio Grande do Sul 2022. Porto Alegre, 2022. Available at: http://www.ageflor.com.br/noticias/wp-content/uploads/2022/12/ANUARIO-AGEFLOR-2022-WEB.pdf. Accessed on: October 23, 2023.
ALNGIEMSHY, N.F.; ALKHARAFI, J.S.; ALHARBI, N.S.; AL-SOWAYAN, N.S. Effect of seeds size on germination of faba bean plant. Agricultural Sciences, Los Angeles, v. 11, n. 5, p. 465-471, 2020.
AMBIKA. S; MANONMANI, V.; SOMASUNDARAM, G. Review on effect of seed size on seedling vigour and seed yield. Research Journal of Seed Science, New York, v. 7, n. 2, p. 31-38, 2014.
ARRUDA, L.; BENEDUZI, A.; MARTINS, A.; LISBOA, B.; LOPES, C.; BERTOLO, F.; PASSAGLIA, L. M. P.; VARGAS, L. K. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology, v. 63, n. 1, p. 15-22, 2013.
BARASSI, C.A.; AYRAULT, G.; CREUS, C.M.; SUELDO, R.J.; SOBRERO, M.T. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, Amsterdam, v. 109, n. 1, p. 8-14, 2006.
BASHAN, Y.; de-BASHAN, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Advances in Agronomy, Amsterdam, v. 108, n. 1, p. 77-136, 2010.
BASKIN, C.C.; BASKIN J.M. Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego (USA): Academic Press, 1998.
BEGNA, S. H.; HAMILTON, R. I.; DWYER, L. M.; STEWART, D. W.; CLOUTIER, D.; ASSEMAT, L.; FOROUTAN-POUR, K.; SMITH, D. L. Morphology and yield response to weed pressure by corn hybrids differing in canopy architecture. European Journal of Agronomy, Amsterdam, v. 14, n. 4, p. 293-302, 2001.
BENECH ARNOLD, R. L.; FENNER, M.; EDWARDS, P. J. Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytologist, Oxford, v. 118, n. 2, p. 339-347, 1991.
BOLAND, D.J.; BROOKER, M.I.H.; CHIPPENDALE, G.M.; HALL, N.; HYLAND, B.P.M.; JOHNSTON, R.O.; KLEINING, D.A.; TURNER, J.D. Forest trees of Australia. Melbourne (Australia): CSIRO, 1984.
CASSÁN, F.; PERRIG, D.; SGROY, V.; MASCIARELLI, O.; PENNA, C.; LUNA, V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, Paris, v. 45, n. 1, p. 28-35, 2009.
CASSÁN, F.; VANDERLEYDEN, J.; SPAEPEN, S. Physiological and agronomical aspects of phytohormone production by model plant growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, New York, v. 33, p. 440-459, 2014.
CHIAPUSIO, G.; SÁNCHEZ, A. M.; REIGOSA, M. J.; GONZÁLEZ, L.; PELLISSIER, F. Do germination indices adequately reflect allelochemical effects on the germination process? Journal of Chemical Ecology, New York, v. 23, p. 2445-2453, 1997.
COOLBEAR, P.; FRANCIS, A.; GRIERSON, D. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany, Oxford, v. 35, n. 11, p. 1609-1617, 1984.
DE SOUZA, E.M.; BASSANI, V.L.; SPEROTTO, R.A.; GRANADA, C.E. Inoculation of new rhizobial isolates improve nutrient uptake and growth of bean (Phaseolus vulgaris) and arugula (Eruca sativa). Journal of the Science of Food and Agriculture, Chichester, v. 96, n. 10, p. 3446-3453, 2016.
DI RIENZO, J.; CASANOVES, F.; BALZARINI, M.G.; GONZÁLES, L.; TABLADA, M.; ROBLEDO, W. InfoStat Versión 2018. Grupo InfoStat. FCA. Córdoba: Universidad Nacional de Córdoba, 2018.
DOLAN, R.W. The effect of seed size and maternal source on individual size in a population of Ludwigia leptocarpa (Onagraceae). American Journal of Botany, Boston, v. 71, n. 9, p. 1302-1307, 1984.
DUCA, D.; LORV, J.; PATTEN, C.L.; ROSE, D.; GLICK, B.R. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek , Amsterdam, v. 106,n. 1, p. 85-125, 2014.
DUNLOP, R. W.; MACLENNAN, L.A. Black Wattle: The South African research experience. Pietermaritzburg (South Africa): ICFR, 2002.
ESECHIE H. Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, Berlin, v. 172, n. 3, p. 194-199, 1994.
FAROOQ, M.; BASRA, S.M.A.; HAFEEZ, K.; AHMAD, N. Thermal hardening: A new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, Beijing, v. 47, n. 2, p. 187-193, 2005.
FATEMEH, A.; MASOUD, T.; PEJMAN, A.; AIDIN, H. Effect of plant growth promoting rhizobacteria (PGPRs) and stratification on germination traits of Crataegus pseudoheterophylla Pojark. seeds. Scientia Horticulturae, Amsterdam, v. 172, p. 61-67, 2014.
FOWLER, A.J.P.; BIANCHETTI, A. Dormência em sementes florestais. Colombo (Brazil): Embrapa Florestas, 2000.
FUKAMI, J.; OLLERO, F.J.; MEGÍAS, M.; HUNGRIA, M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, Heidelberg, v. 7, n. 1, p. 1-13, 2017.
GARCIA-LEMOS, A.M.; GOBBI, A.; NICOLAISEN, M.H.; HANSEN, L.H.; ROITSCH, T.; VEIERSKOV, B.; NYBROE, O. Under the christmas tree: belowground bacterial associations with Abies nordmanniana across production systems and plant development. Frontiers in Microbiology, Lausanne, v. 11, n.1, p. 198, 2020.
GERITZ, S.A.H. Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. The American Naturalist, Chicago, v. 146, n. 5, p. 685-707, 1995.
GIESBRECHT, B. M.; COLDEBELLA, R.; GENTIL, M.; NUNES, G. R. S.; FINGER, M. R.; JARDIM, J.; PEDRAZZI, C.; CARDOSO, G. V. Performance da madeira de Acacia mearnsii De Wild para polpação kraft. Ciência Florestal, Santa Maria, v. 32, n. 1, p. 266–286, 2022.
GRANADA, C.E.; ARRUDA, L.; LISBOA, B.B.; PASSAGLIA, L.M.P.; VARGAS, L.K. Diversity of native rhizobia isolated in south Brazil and their growth promotion effect on white clover (Trifolium repens) and rice (Oryza sativa) plants. Biology and Fertility of Soils, Heidelberg, v. 50, p. 123-132, 2014.
GRAY, E.J.; SMITH, D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, Amsterdam, v. 37, n. 3, p. 395-412, 2005.
GRIFFIN, A.R.; MIDGLEY, S.J.; BUSH, D.; CUNNINGHAM, P.J.; RINAUDO, A.T. Global uses of Australian acacias – recent trends and future prospects. Diversity and Distributions, Oxford, v. 17, n. 5, p. 837-847, 2011.
HARPER, J.L. Population Biology of Plants. New York (USA): Academic Press, 1977.
HILL, S.J.; AULD, T.D. Seed size an important factor for the germination response of legume seeds subjected to simulated post-fire soil temperatures. International Journal of Wildland Fire, Collingwood, v. 29, n. 7, p. 618-627, 2020.
KADER, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceeding of the Royal Society of New South Wales, Sydney,v. 138, p. 65-75, 2005.
KANDASAMY, S.; WEERASURIYA, N.; GRITSIOUK, D.; PATTERSON, G.; SALDIAS, S.; ALI, S.; LAZAROVITS, G. Size variability in seed lot impact seed nutritional balance, seedling vigor, microbial composition and plant performance of common corn hybrids. Agronomy, Basel, v. 10, n. 2, p. 157, 2020.
KOLB, W.; MARTIN, P. Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. In: KLINGMÜLLER, W. (ed.) Azospirillum III: Genetics·Physiology· Ecology Proceedings of the Third Bayreuth Azospirillum Workshop. Heidelberg: Springer, 1985, p. 215-221.
KUMAR, R.; SHAMET, G. S.; ALAM, N. M.; JANA, C. Influence of growing medium and seed size on germination and seedling growth of Pinus gerardiana Wall. Compost Science and Utilization, Philadelphia, v. 24, n. 2, p. 98-104, 2016.
MANGMANG, J.S.; DEAKER, R.; ROGERS, G. Optimal plant growth-promoting concentration of Azospirillum brasilense inoculated to cucumber, lettuce and tomato seeds varies between bacterial strains. Israel Journal of Plant Sciences, Abingdon, v. 62, n. 3, p. 145-152, 2015.
MAO, P.; GUO, L.; GAO, Y.; QI, L.; CAO, B. Effects of seed size and sand burial on germination and early growth of seedlings for coastal Pinus thunbergii Parl. in the Northern Shandong Peninsula, China. Forests, Basel, v. 10, n. 3, p. 281, 2019.
MECHERGUI, T.; PARDOS, M.; JACOBS, D.F. Effect of acorn size on survival and growth of Quercus suber L. seedlings under water stress. European Journal of Forest Research, Heidelberg, v. 140, n. 1, p. 175-186, 2021.
OLIVEIRA, D.L.; SMIDERLE, O.J.; PAULINO, P.P.S.; SOUZA, A.G. Water absorption and method improvement concerning electrical conductivity testing of Acacia mangium (Fabaceae) seeds. Revista de Biología Tropical, San José, v. 64, n. 4, p. 1651-1660, 2016.
RAMACHANDRAN, A.; RADHAPRIYA, P. Restoration of degraded soil in the Nanmangalam Reserve forest with native tree species: effect of indigenous plant growth-promoting bacteria. The Scientific World Journal, London, v. 2016, n. 1, p. 5465841, 2016.
ROZIER, C.; GERIN, F.; CZARNES, S.; LEGENDRE, L. Biopriming of maize germination by the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. Journal of Plant Physiology, München, v. 237, n. 1, p. 111-119, 2019.
ROZIER, C.; HAMZAOUI, J.; LEMOINE, D.; CZARNES, S.; LEGENDRE, L. Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Scientific reports, London, v. 7, n. 1, p. 7416, 2017.
SANTOS M.S.; NOGUEIRA, M.A.; HUNGRIA, M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira de Ciência do Solo, Viçosa, v. 45, n. 1, p. e0200128, 2021.
SÃO JOSÉ, J.F.B.; DU TOIT, B.; VOLPIANO, C.G..; LISBOA, B.B.; TIECHER, T.; BAYER, C.; BENEDUZI, A.; VARGAS, L.K. Soil nutrient dynamics, harvest residue management and soil organic matter conservation for the sustainability of black wattle production systems in subtropical soils: a review. New Forests, Basileia, 2023.
SÃO JOSÉ, J.F.B.; VOLPIANO, C.G.; VARGAS, L.K.; HERNANDES, M.A.S.; LISBOA, B.B.; SCHLINDWEIN G.; SAMPAIO, J.A.T.; BENEDUZI, A.; LONGONI, L.S. Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of Acacia mearnsii seeds. Australian Forestry, Melbourne, v. 82, n. 3, p. 157-161, 2019.
SCHILLACI, M.; ARSOVA, B.; WALKER, R.; SMITH, P. M.; NAGEL, K. A.; ROESSNER, U.; WATT, M. Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature. Plant Growth Regulation, Dordrecht, v. 93, n. 1, p. 149-162, 2021.
SCHLINDWEIN, G.; VARGAS, L.K.; LISBOA, B.B.; AZAMBUJA, A.C.; GRANADA, C.E.; GABIATTI, N.C. Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Ciência Rural, Santa Maria, v. 38, n. 3, p. 658-664, 2008.
SCHUMACHER, M. V.; BRUM E. J.; RODRIGUES L. M.; SANTOS E. M. Nutrient return via litter deposition in a black wattle (Acacia mearnsii De Wild.) stand in Rio Grande do Sul, Brazil. Revista Árvore, Viçosa, v. 27, n. 6, p. 791-798, 2003.
SHAHI, C.; VIBNUTI, K. B.; BARGALI, S.S. How seed size and water stress affect the seed germination and seedling growth in wheat varieties? Current Agriculture Research Journal, Melbourne, v. 3, n. 1, p. 60-68, 2015.
SOARES, G.M.; SILVA, L.D.; HIGA, A.R.; SIMON, A.A.; SÃO JOSÉ, J.F.B. Growth of Acacia mearnsii De Wild and Eucalyptus globulus Labill in monoculture and mixed-plantations with simple lines and double lines of planting. Scientia Forestalis, Piracicaba, n. 120, p. 571-581, 2018.
SOUZA, M.L.; FAGUNDES, M. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences, Irvine, v. 5, n. 17, 2566-2573, 2014.
SOUZA, N.L.; ROCHA, S.S.; NAREZZI, N.T.; TIEPO, A.N.; OLIVEIRA, A.L.M.; OLIVEIRA, H.C.; BIANCHINI, E.; PIMENTA, J.A.; STOLF-MOREIRA, R. Differential impacts of plant growth-promoting bacteria (PGPB) on seeds of neotropical tree species with contrasting tolerance to shade. Trees, Berlin, v. 34, 121-132, 2020.
TIEN, T.M.; GASKINS, M.H.; HUBBELL, D.H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, Washington, v. 37, n. 5, 1016-1024, 1979.
TIEPO, A.N.; HERTEL, M.F.; ROCHA, S.S.; CALZAVARA, A.K.; OLIVEIRA, A.L.M.; PIMENTA, J.A.; OLIVEIRA, H.C.; BIANCHINI, E.;STOLF-MOREIRA, R. Enhanced drought tolerance in seedlings of neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiology and Biochemistry, Paris, v. 130, n. 1, 277-288, 2018.
VARGAS, L.K.; SÃO JOSÉ, J. F. B.; VOLPIANO, C. G.; AMBROSINI, A.; LISBOA, B. B.; SIMON, A. A.; OLIVEIRA, J.; PASSAGLIA, L. M. P.; BENEDUZI, A. Indole acetic-producing bacteria promote the root development of Acacia mearnsii cuttings. Australian Forestry, Queen Victoria, 2023.
ZAWOZNIK, M.S.; AMENEIROS, M.; BENAVIDES, M.P.; VÁZQUEZ, S.; GROPPA M.D. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, New York, v. 90, n. 4, p. 1389-1397, 2011.
ZHANG, C.; WILLIS, C.G.; BURGHARDT, L.T.; QI, W.; LIU, K.; MOURA SOUZA-FILHO, P.R.; MA, Z.; DU, G. The community‐level effect of light on germination timing in relation to seed mass: a source of regeneration niche differentiation. New Phytologist, Cambridge, v. 204, n. 3, p. 496-506, 2014.
ZULUETA-RODRÍGUEZ, R.; HERNÁNDEZ-MONTIEL, L.; MURILLO-AMADOR, B.; RUEDA-PUENTE, E.; CAPISTRÁN, L.; TROYO-DIÉGUEZ, E.; CÓRDOBA-MATSON, M. Effect of hydropriming and biopriming on seed germination and growth of two Mexican fir tree species in danger of extinction. Forests, Basel, v. 6, n. 9, p. 3109-3122, 2015.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência Florestal
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A CIÊNCIA FLORESTAL se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da lingua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas as autoras e aos autores.
Os trabalhos publicados passam a ser propriedade da revista CIÊNCIA FLORESTAL, sendo permitida a reprodução parcial ou total dos trabalhos, desde que a fonte original seja citada.
As opiniões emitidas pelos autores dos trabalhos são de sua exclusiva responsabilidade.