Respostas fisiológicas de plantas jovens de <i>Eucalyptus urophylla</i> tratadas com bioestimulante sob deficit hídrico

Autores

DOI:

https://doi.org/10.5902/1980509826206

Palavras-chave:

Woody plants, Plant growth regulators, Drought, Water stress

Resumo

Biostimulants consist of a mixture of growth regulators that, when they are sprayed on plants, act on hormonal balance, enhancing its development. Stimulate® is a biostimulant composed by indole butyric acid (0.005%), kinetin (0.009%) and gibberellic acid (0.005%) which promotes root growth, improves water and nutrients uptake, and helps restore plant hormonal balance. This research was based on the hypothesis that Stimulate® spraying can be an alternate way to mitigate negative effects of soil water-limiting on plant growth. The experimental work was performed in greenhouse and aimed to evaluate physiological responses of young plants of Eucalyptus urophylla sprayed with different Stimulate® concentrations and submitted to the following irrigation regimes: full, partial and no irrigation. Leaf water potential, relative water content, net photosynthesis, plant height and main root length were measured. Under water-limited conditions, plants sprayed with Stimulate® showed higher net photosynthesis and relative water content had a less decrease, due to osmotic adjustment. Spraying with Stimulate® also provided greater plant height and longer main root length in plants under water deficit. We conclude that the use of Stimulate® can be a viable option to mitigate negative water stress physiological effects in young plants of Eucalyptus urophylla, helping to partially maintain the plant growth under water-limited conditions.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rayka Kristian Alves Santos, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA

Engenheira Agrônoma, Doutora em Agronomia, Bolsista PNPD/CAPES do Programa de Pós-Graduação em Agronomia da Universidade Estadual do Sudoeste da Bahia

Paulo Araquém Ramos Cairo, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA

Engenheiro Agrônomo, Doutor em Fisiologia Vegetal, Professor Pleno da Universidade Estadual do Sudoeste da Bahia, Departamento de Fitotecnia e Zootecnia

Romário Pereira Barbosa, Pesquisador Autônomo, Vitória da Conquista, BA

Engenheiro Agrônomo, Mestre em Agronomia

Janderson de Jesus Lacerda, Universidade Estadual de Santa Cruz, Ilhéus, BA

Engenheiro Agrônomo, Mestre em Agronomia, Doutorando em Produção Vegetal na Universidade Estadual de Santa Cruz

Caio da Silva Mafra Neto, Pesquisador Autônomo, Conceição da Barra, ES

Engenheiro Florestal, Suzano S.A.

Theilon Henrique de Jesus Macedo, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA

Engenheiro Florestal, Mestrando em Ciências Florestais

Referências

ALBAUGH, J. M.; DYE, P. J.; KING, J. S. Eucalyptus and water use in South Africa. International Journal of Forestry Research, London, v. 2013, p. 1-11, 2013.

AROCA, R. Plant Responses to Drought Stress. From Morphological to Molecular Features. Berlin: Springer-Verlag, 2012. 466 p.

BRUNNER, I. et al. How tree roots respond to drought. Frontiers in Plant Science, Lausanne, v. 6, p. 1-16, 2015.

CARVALHO, C. J. R. Respostas de plantas de Schizolobium amazonicum (S. parahyba var: amazonicum) e Schizolobium parahyba (Schizolobium parahybum) à deficiência hídrica. Revista Árvore, Viçosa, MG, v. 29, n. 6, p. 907-914, 2005.

CLAEYS, H.; INZÉ, D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiology, Rockville, v. 162, n. 4, p. 1768-1779, 2013.

COSTA E SILVA, F. et al. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiology, Oxford, v. 24, p. 1165-1172, 2004.

DANTAS, A. C. V. L. et al. Effect of gibberellic acid and the biostimulant Stimulate® on the initial growth of tamarind. Revista Brasileira de Fruticultura, Jaboticabal, v. 34, n. 1, p. 8-14, 2012.

DIJKSTRA, P.; REEGEN, H.; KUIPER, P. J. Relation between relative growth rate, endogenous gibberellins, and the response to applied gibberellic acid for Plantago major. Physiologia Plantarum, Lund, v. 79, n. 4, p. 629-634, 1990.

EHLERT, B. et al. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. Journal of Experimental Botany, Oxford, v. 59, n. 13, p. 3635-3647, 2008.

EMBRAPA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: EMBRAPA; CNPS, 1997. 212 p. (Documentos, n. 1).

FERNANDES, E. T.; CAIRO, P. A. R.; NOVAES, A. B. Respostas fisiológicas de clones de eucalipto cultivados em casa de vegetação sob deficiência hídrica. Ciência Rural, Santa Maria, v. 45, n. 1, p. 29-34, 2015.

GURURANI, M. A.; MOHANTA, T. K.; BAE, H. Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, Basel, v. 16, n. 8, p. 19055-19085, 2015.

LAPLAZE, L. et al. Cytokinins acts directly on lateral root founder cells to inhibit root initiation. Plant Cell, Berkeley, v. 19, n. 12, p. 3889-3900, 2007.

LI, X.; XU, K. Effects of exogenous hormones on leaf photosynthesis of Panax ginseng. Photosynthetica, Prague, v. 52, n. 1, p. 152-156, 2014.

OLIVEIRA JÚNIOR, O. A.; CAIRO, P. A. R.; NOVAES, A. B. Características morfofisiológicas associadas à qualidade de mudas de Eucalyptus urophylla produzidas em diferentes substratos. Revista Árvore, Viçosa, MG, v. 35, n. 6, p. 1173-1180, 2011.

PALLARDY, S. G. Physiology of woody plants. 3th ed. Oxford: Elsevier, 2008. 454 p.

POORTER, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, Lancaster, v. 193, n. 1, p. 30-50, 2012.

PRYOR, L. D.; EAMUS, D. Seasonal changes in leaf water characteristics of Eucalyptus tetrodonta and Terminalia ferdinandiana saplings in a northern Australian savana. Australian Journal of Botany, Melbourne, v. 47, n. 4, p. 587-599, 1999.

RIBEIRO, A. C.; GUIMARÃES, P. T. G.; ALVAREZ, V. H. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Viçosa, MG: CFSEMG; UFV, 1999. 359 p.

RIVERO, R. M. et al. Enhanced cytokinin synthesis in tobacco plants expressing PSARK: IPT prevents the degradation of photosynthetic protein complexes during drought. Plant and Cell Physiology, Oxford, v. 51, n. 11, p. 1929-1941, 2010.

RIVERO, R. M.; SHULAEV, V.; BLUMWALD, E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, Rockville, v. 150, n. 3, p. 1530-1540, 2009.

SAITO, T. et al. Variations in transpiration rate and leaf cell turgor maintenance in saplings of deciduous broad-leaved tree species common in cool temperate forests in Japan. Tree Physiology, Oxford, v. 23, p. 59-66, 2003.

SANCHES, F. R. Aplicação de biorreguladores vegetais: aspectos fisiológicos e aplicações práticas na citricultura mundial. Jaboticabal: Funep, 2000. 160 p.

SANTOS, C. M. G. Ação de bioestimulante na germinação de sementes, vigor de plântulas e crescimento do algodoeiro. Salvador: Universidade Federal da Bahia, 2004. 61 p.

SCHOLANDER, P. F. et al. Sap pressure in vascular plants. Science, Washington, v. 148, n. 3668, p. 339-346, 1965.

SHAO, R.; WANG, K.; SHANGGUAN, Z. Cytokinin-induced photosynthetic adaptability of Zea mays L. To drought stress associated with nitric oxide signal: Probed by ESR spectroscopy and fast OJIP fluorescence rise. Journal of Plant Physiology, Amsterdam, v. 167, n. 6, p. 472-479, 2009.

SILVA, W. et al. Condutância estomática de Eucalyptus citriodora e E. grandis, em resposta a diferentes níveis de água no solo e de convivência com Brachiaria brizantha Stapf. Bragantia, Campinas, v. 57, n. 2, p. 339-347, 1998.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017. 858 p.

TANIMOTO, E. Regulation of root growth by plant hormones – roles for auxin and gibberellin. Critical Reviews in Plant Sciences, London, v. 24, n. 4, p. 249-265, 2005.

TOGNETTI, V.; MÜHLENBOCK, P.; VAN BREUSEGEM, F. Stress homeostasis – the redox and auxin perspective. Plant, Cell and Environment, Glasgow, v. 35, n. 2, p. 321-333, 2011.

VENTURIN, N. et al. Histórico. In: VALE, A. B. et al. Eucaliptocultura no Brasil: silvicultura, manejo e ambiência. Viçosa, MG: SIF, 2014. p. 17-37.

WEATHERLEY, P. E. Studies in the water relations of the cotton plant. I. The field measurement of water deficit in leaves. New Phytologist, Lancaster, v. 49, n. 1, p. 81-97, 1950.

WHITEHEAD, D.; BEADLE, C. L. Physiological regulation of productivity and water use in Eucalyptus: a review. Forest Ecology and Management, Amsterdam, v. 193, p. 113-140, 2004.

YUAN, L.; XU, D. Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynthesis Research, Basel, v. 68, n. 1, p. 39-47, 2001.

Downloads

Publicado

30-09-2019

Como Citar

Santos, R. K. A., Cairo, P. A. R., Barbosa, R. P., Lacerda, J. de J., Mafra Neto, C. da S., & Macedo, T. H. de J. (2019). Respostas fisiológicas de plantas jovens de <i>Eucalyptus urophylla</i> tratadas com bioestimulante sob deficit hídrico. Ciência Florestal, 29(3), 1072–1081. https://doi.org/10.5902/1980509826206

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)