Fauna edáfica e suas relações com atributos químicos, físicos e microbiológicos em Floresta de Araucária

Auteurs-es

DOI :

https://doi.org/10.5902/1980509831377

Mots-clés :

Floresta nativa e reflorestada, Análise multivariada, Invertebrados de solo, Biodiversidade do solo

Résumé

A permanente cobertura vegetal do solo, em Florestas de Araucária, contribui na conservação de sua biodiversidade edáfica. O objetivo deste trabalho foi avaliar o potencial da fauna edáfica e das variáveis ambientais explicativas (físico-químicas e microbiológicas do solo) na discriminação de florestas com araucária nativa e reflorestada. Avaliaram-se florestas com Araucaria angustifolia nativa (NF) e reflorestada (RF) em três regiões distintas no estado de São Paulo, representando três repetições. Em cada área, 15 amostras de solo foram coletadas para avaliação dos atributos físicos, químicos e microbiológicos e, nos mesmos pontos, procedeu-se às coletas da fauna utilizando-se o método de armadilhas de queda (Pitfall traps). A fauna do solo foi influenciada pela sazonalidade, apresentando maior abundância de indivíduos no verão. Os grupos Collembola, Formicidae e Coleoptera foram os mais abundantes, independentemente da época de amostragem e tipo de floresta. A Análise de Componentes Principais (ACP) e Análise Canônica Discriminante (ACD) claramente diferenciaram as áreas de araucárias. Na ACP, Hemiptera, Collembola e Diplopoda ficaram associados à RF no inverno, principalmente pelos maiores valores de matéria seca da serapilheira. Já em NF, foram os grupos Orthoptera, Hymenoptera, Araneae e Coleoptera, explicados pela melhor qualidade do solo e da serapilheira. No verão, ficaram associados à NF, os grupos Formicidae, Hemiptera, Orthoptera, Araneae, Coleoptera e Collembola, explicados pelos maiores valores de CBM, Ca, P, C-org, macroporosidade e atividade de desidrogenase. Na ACD, a abundância de grupos taxonômicos foi o atributo da fauna edáfica mais importante para a discriminação das florestas. Da mesma forma, a umidade do solo, teor de P no solo, porosidade total e teor de S na serapilheira contribuíram na discriminação das florestas. A semelhança entre as áreas, em relação aos grupos da fauna edáfica, indica que está ocorrendo uma estabilidade das áreas reflorestadas comparável às nativas.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

ALEF, K.; NANNIPIERI, P. Methods in apllied soil microbiology and biochemistry. London: Academic Press, 1995. 576 p.

ANDERSON, T. H.; DOMSCH, K. H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, Oxford, v. 25, p. 393-395, 1993.

ASPETTI, G. P. et al. Assessment of soil-quality index based on microarthropods in corn cultivation in Northern Italy. Ecological Indicators, [s. l.], v. 10, n. 2, p. 129-135, 2010.

BABEL, U.; EHRMANN, O.; KREBS, M. Relationships between earthworms and some plant species in a meadow. Soil Biology and Biochemistry, Oxford, v. 24, n. 12, p. 1477-1481, 1992.

BARETTA, D.; BROWN, G. G.; CARDOSO, E. J. B. N. Potencial da macrofauna e outras variáveis edáficas como indicadores da qualidade do solo em áreas com Araucaria angustifolia. Acta Zoologica Mexicana, Xalapa, v. 26, p. 135-150, 2010.

BARETTA, D. et al. Colêmbolos (Hexapoda: Collembola) como bioindicadores de qualidade do solo em áreas com Araucaria angustifolia. Revista Brasileira de Ciência do Solo, Viçosa, v. 32, p. 2693-2699, 2008.

BARETTA, D. et al. Earthworm populations sampled using collection methods in atlantic forests with Araucaria angustifolia. Scientia Agricola, Piracicaba, v. 64, n. 4, p. 384-392, 2007b.

BARETTA, D. et al. Efeito do monocultivo de Pinus e da queima do campo nativo em atributos biológicos do solo no Planalto sul Catarinense. Revista Brasileira de Ciência do Solo, Viçosa, v. 29, n. 5, p. 715-724, 2005.

BARETTA, D. et al. Fauna edáfica e qualidade do solo. In: KLAUBERG-FLHO, O.; MAFRA, Á. L.; GATIBONI, L. C. (ed.). Tópicos em ciência do solo. 7. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2011. p. 119-170.

BARETTA, D. et al. Trap and soil monolith sampled edaphic spiders (Arachnida: Araneae) in Araucaria angustifolia forest. Scientia Agricola, Piracicaba, v. 64, n. 4, p. 375-383, 2007a.

BEEBY, A. Applying ecology. London: Chapman & Hall, 1993. 441 p.

BERG, M. P.; HEMERIK, L. Secondary succession of terrestrial isopod, centipede, and millipede communities in grasslands under restoration. Biology and Fertility of Soils, Berlin, v. 40, n. 3, p. 163-170, 2004.

BLAKE, G. R.; HARTGE, K. H. Bulk density. In: KLUTE, A. (ed.). Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd. ed. Madison: American Society of Agronomy and Soil Science Society of America, 1986. p. 363-375.

BROCARDO, C. R.; CÂNDIDO JÚNIOR, J. F. Persistência de mamíferos de médio e grande porte em fragmentos de floresta ombrófila mista no estado do Paraná, Brasil. Revista Árvore, Viçosa, v. 36, n. 2, p. 301-310, 2012.

BRUSSAARD, L.; RUITER, P. C.; BROWN, G. G. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment, Amsterdam, v. 121, n. 3, p. 233-244, 2007.

CASIDA JUNIOR, L. E.; KLEIN, D. A.; SANTORO, T. Soil dehydrogenase activity. Soil Science, Baltimore, v. 98, n. 6, p. 371-376, 1964.

CONG, W.-F. et al. Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant and Soil, Berlin, v. 391, n. 1/2, p. 399-411, 2015.

COYLE, D. R. et al. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biology and Biochemistry, Oxford, v. 110, p. 116-133, 2017.

CROTTY, F. V. et al. Assessing the impact of agricultural forage crops on soil biodiversity and abundance. Soil Biology and Biochemistry, Oxford, v. 91, p. 119-126, 2015.

DECAËNS, T. et al. Factors influencing soil macrofaunal communities in post-pastoral successions of western France. Applied Soil Ecology, Amsterdam, v. 9, n. 1-3, p. 361-367, 1998.

EMBRAPA. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: EMBRAPA Solos, 2011. 230 p.

EMBRAPA. Sistema brasileiro de classificação de solos. 2. ed. Rio de Janeiro: EMBRAPA Solos, 2006. 306 p.

GALLO, D. et al. Entomologia agrícola. Piracicaba: FEALQ, 2002. 920 p.

GEE, G. W.; OR, D. Particle-size analysis. In: DANE, J. H.; TOPP, G. C. (ed.). Methods of soil analysis. Part 4. Physical methods. Madison: Soil Science Society of America, 2002. p. 255-293.

GUERRA, M. P. et al. Exploração, manejo e conservação da araucária (Araucaria angustifolia). In: SIMÕES, L. L.; LINO, C. F. (ed.). Sustentável Mata Atlântica: a exploração de seus recursos florestais. São Paulo: SENAC, 2002. p. 85-102.

HUECK, K. As florestas da América do Sul. São Paulo: Polígono, 1972. 466 p.

HUTCHINS, M. et al.(ed.). Grzimek’s animal life encyclopedia. 2nd. ed. Farmington Hills: Gale Group, 2003a. v. 2. 589 p.

HUTCHINS, M. et al. (ed.). Grzimek’s animal life encyclopedia. 2nd. ed. Farmington Hills: Gale Group, 2003b. v. 3. 489 p.

JING, S. et al. Differences in Soil Arthropod Communities along a High Altitude Gradient at Shergyla Mountain, Tibet, China. Arctic, Antarctic, and Alpine Research, Boulder, v. 37, n. 2, p. 261-266, 2005.

LAVELLE, P.; SPAIN, A. V. Soil ecology. 1st. ed. Amsterdam: Kluwer Scientific, 2001. 678 p.

LIMA, A. C. R. et al. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology, Amsterdam, v. 64, p. 194-200, 2013.

MAHARNING, A. R.; MILLS, A. A. S.; ADL, S. M. Soil community changes during secondary succession to naturalized grasslands. Applied Soil Ecology, Amsterdam, v. 41, n. 2, p. 137-147, 2009.

MARTIUS, C. et al. Microclimate in agroforestry systems in central Amazonia: does canopy closure matter to soil organisms? Agroforestry Systems, [s. l.], v. 60, n. 3, p. 291-304, 2004.

MAUNSELL, S. C. et al. Springtail (Collembola) assemblages along an elevational gradient in Australian subtropical rainforest. Australian Journal of Entomology, Canberra, v. 52, n. 2, p. 114-124, 2013.

MENTA, C. Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In: LAMEED, G. A. (ed.). Biodiversity conservation and utilization in a diverse world. [S. l.]: INTECH, 2012. p. 59-94.

MOLINA, G. A. R.; POGGIO, S. L.; GHERSA, C. M. Epigeal arthropod communities in intensively farmed landscapes: Effects of land use mosaics, neighbourhood heterogeneity, and field position. Agriculture, Ecosystems and Environment, Amsterdam, v. 192, p. 135-143, 2014.

MOREIRA, M. et al. Arbuscular mycorrhizal fungal communities in native and in replanted Araucaria forest. Scientia Agricola, Piracicaba, v. 66, n. 5, p. 677-684, 2009.

MUMLADZE, L. et al. Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Experimental and Applied Acarology, Northwood, v. 66, n. 1, p. 41-51, 2015.

PEREIRA, J. M.; BARETTA, D.; CARDOSO, E. J. B. N. Fauna edáfica em floresta de Araucária. In: CARDOSO, E. J. B. N.; VASCONCELLOS, R. L. F. (ed.). Floresta com Araucária: composição florística e biota do solo. Piracicaba: FEALQ, 2015. p. 153-180.

PEREIRA, J. M. et al. Relationships between microbial activity and soil physical and chemical properties in native and reforested Araucaria angustifolia forests in the state of São Paulo, Brazil. Revista Brasileira de Ciência do Solo, Viçosa, v. 37, n. 3, p. 572-586, 2013.

PEREIRA, J. M. et al. Soil macrofauna as a soil quality indicator in native and replanted Araucariaangustifolia forests. Revista Brasileira de Ciência do Solo, Viçosa, v. 41, p. e0160261, 2017.

PONGE, J.-F. et al. The impact of agricultural practices on soil biota: a regional study. Soil Biology and Biochemistry, Oxford, v. 67, p. 271-284, 2013.

PONGE, J.-F. et al. Soil Macrofaunal communities are heterogeneous in Heathlands with different grazing intensity. Pedosphere, [s. l.], v. 25, n. 4, p. 524-533, 2015.

RIBEIRO, M. C. et al. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, Cambridge, v. 142, n. 6, p. 1141-1153, 2009.

RÖDER, J. et al. Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient. Biotropica, [s. l.], v. 49, n. 2, p. 217-228, 2017.

ROUSSEAU, L. et al. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators, [s. l.], v. 27, p. 71-82, 2013.

ROŹEN, A. et al. Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Applied Soil Ecology, Amsterdam, v. 45, p. 160-167, 2010.

SANTOS, R. L. R. et al. Comunidade arbórea de trecho de floresta secundária com araucária na Estação Ecológica de Bananal, Bananal-SP. Instituto Florestal, São Paulo, v. 40, p. 137-142, 2009.

SANTOS, R. L. R.; IVANAUSKAS, N. M. Estrutura do componente arbóreo de trecho de floresta de araucária na Estação Ecológica de Itaberá, Itaberá‒SP, Brasil. Instituto Florestal, São Paulo, v. 42, p. 127-131, 2010.

SAS INSTITUTE. SAS/STAT: user’s guide statistics. [S. l.]: CarySAS Institute, 2002.

SOUZA, R. P. M. Estrutura da comunidade arbórea de trechos de florestas de Araucária no estado de São Paulo, Brasil. 2008. Dissertação (Mestrado em Recursos Florestais) - Universidade de São Paulo, Piracicaba, 2008.

TER BRAAK, C. J. F.; ŠMILAUER, P. CANOCO reference manual and CanoDraw for Windows User’s Guide: software for canonical community ordination (version 4.5). Wageningen: Microcomputer Power, 2002. 10 p.

VAN RAIJ, B. et al. Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico de Campinas, 2001. 285 p.

VANCE, E. D.; BROOKES, P. C.; JENKINSON, D. S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, Oxford, v. 19, n. 6, p. 703-707, 1987.

VASCONCELLOS, R. L. F. et al. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology, Amsterdam, v. 58, p. 105-112, 2013.

ZEPPELINI, D. et al. Collembola as bioindicators of restoration in mined sand dunes of Northeastern Brazil. Biodiversity and Conservation, New York, v. 18, n. 5, p. 1161-1170, 2009.

Téléchargements

Publié-e

2020-04-06

Comment citer

Pereira, J. de M., Baretta, D., Oliveira Filho, L. C. I., Maluche-Baretta, C. R. D., & Cardoso, E. J. B. N. (2020). Fauna edáfica e suas relações com atributos químicos, físicos e microbiológicos em Floresta de Araucária. Ciência Florestal, 30(1), 242–257. https://doi.org/10.5902/1980509831377

Numéro

Rubrique

Nota Técnica

Articles les plus lus du,de la,des même-s auteur-e-s