Predicción bayesiana de parámetros genéticos en clones de <i>Eucalyptus globulus </i>bajo condiciones de suplemento hídrico
DOI:
https://doi.org/10.5902/198050989297Palabras clave:
riego, crecimiento, heredabilidad, valores genéticos.Resumen
Se realizó un análisis Bayesiano de parámetros genéticos del crecimiento en 29 clones de Eucalyptus globulus de doce meses de edad, en el sur de Chile. Se consideraron dos condiciones ambientales contrastantes en cuanto a la disponibilidad hídrica: 1. Sin irrigación, y 2. Las plantas se irrigaron con un sistema localizado de riego. Para el análisis Bayesiano se utilizó el algoritmo de Gibbs en un modelo de interacción clon-ambiente. Los valores de heredabilidad fueron altos en la condición de riego (moda a posteriori de H2=0,41, 0,36 y 0,39 para la altura, diámetro y área basal, respectivamente), en tanto que en la situación sin riego, los valores de las heredabilidades fueron significativamente más bajos; confirmado por medio de los intervalos de credibilidad Bayesianos (95% de probabilidad). La moda a posteriori de la correlación genética entre sitios fue positiva y alta para las tres características (r=0,7, 0,65 y 0,8, para altura, diámetro y área basal, respectivamente), y de acuerdo al intervalo de credibilidad, esta correlación fue estadísticamente diferente de cero, indicando una interacción no significativa.
Descargas
Citas
CANE-RETAMALES, C. et al. Bayesian threshold analysis of breeding values, genetic correlation and heritability of flowering intensity in Eucalyptus cladocalyx under arid conditions. Euphytica, Wageningen, v. 178, n. 2. p 177-183, Mar. 2011.
CAPPA, E. et al. Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina. Tree Genetics & Genomes, Davis, v. 6, p. 981–994, June 2010.
CAPPA, E.; CANTET, R. Bayesian inference for normal multiple-trait individual-tree models with missing records via full conjugate Gibbs. Canadian Journal of Forest Research, Ottawa, v. 36, n. 5, p. 1276-1285, May, 2006.
COSTA E SILVA, F. et al. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiology, Victoria, v. 29, n.1, p. 77-86, Sept. 2008.
COSTA E SILVA, F. et al. Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genetics & Genomes, Davis, v. 5, p. 291–305, Sept. 2009.
COSTA, M.; COLODETTE, J. The impact of kappa number composition on Eucalyptus kraft pulp bleachability. Brazilian Journal of Chemical Engineering, v. 24, n.1, p 61-71, Jan./Mar. 2007.
GONÇALVES-VIDIGAL, M. C. et al. Heritability of quantitative traits in segregating common bean families using a Bayesian approach. Euphytica, Wageningen, v. 164, p. 551-560, July 2008.
HEIDELBERGER, P.; WELCH, P.D. Simulation run length control in the presence of an initial transient. Opns Res, v. 31, p. 1109-44, 1983.
HUBBARD, R. et al. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management, Amsterdam, v. 259, p. 1714-1721, 2010.
HUNDE, T. et al. Genetic variation in survival and growth of Eucalyptus globulus Ssp. globulus in Ethiopia. Australian Forestry, Queen Victoria. Yarralumla, v. 70, n. 1, p. 48–52, Mar 2007.
IGNACIO-SÁNCHEZ, E. et al. Genetic parameters for growth and wood density in juvenile Eucalyptus urophylla S. T. Blake. Agrociencia, Montecillo, v. 4, p. 469-479, 2005.
INFOR. Inventario continuo de bosques nativos y actualizaciones de plantaciones forestales. Disponível em <(http://www.infor.gov.cl/es/component/docman/doc_details/41-inventario-continuo-de-bosques-nativos-y-actualizaciones-de-plantacionesforestales.html)> Acesso em: 25 de maio de 2011.
INIA. Suelos volcánicos de Chile. Santiago do Chile: Ministerio de Agricultura, 1985.
LIMA, J. et al. Genotype-environment interaction in wood basic density of Eucalyptus clones. Wood Science and Technology, Berlin, v. 34, n. 3, p. 197-206, 2000.
LOPES, E. et al. Application of life cycle assessment to the Portuguese pulp and paper industry. Journal of Cleaner Production, v. 11, p. 51-59, ene. 2003.
LOPEZ, G. A. et al. Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. Forest Gen, v. 9, n. 3, p. 223–237, Sept. 2002.
MORA, F. et al. El análisis bayesiano y la precisión de los valores de la heredabilidad en especies perennes. Ciência Florestal, Santa Maria, v. 19, n. 4, p. 345-351, out./dez. 2009.
MORA, F. et al. Genetic parameters of growth and survival in Acacia saligna shrubs. Ciencia e Investigación Agraria, v. 37, n. 2, p. 5-14, May 2010.
MORA, F.; PERRET, S. Aplicación de técnicas bayesianas en el análisis genético de árboles forestales. Bosque, Valdivia, v. 28, n. 3, p. 198-206, 2007.
RESENDE, M. D. V. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: EMBRAPA Informação Tecnológica, 2002. 975 p.
ROCHA, R. B. et al. Avaliação do método centróide para estudo de adaptabilidade ao ambiente de clones de Eucalyptus grandis. Ciência Florestal, Santa María, v. 15, n. 3, p. 255-266, 2005.
SANTELICES, R. Desarrollo de una plantación de Eucalyptus globulus establecida en primavera con diferentes tratamientos de riego. Bosque, Valdivia, v. 26, n. 3, p. 105-112, feb. 2005.
SANTOS, A. I. et al. Bayesian genetic parameters for body weight and survival of Nile tilapia farmed in Brazil. Pesquisa Agropecuária Brasileira, Brasília, v. 46, n. 1, p. 33-43, jan. 2011.
SCOTT, S. et al. Possum browsing-the downside to a eucalypt hybrid developed for frost tolerance in plantation forestry. Forest Ecology and Management, Amsterdam, v. 157, p. 231-245. 2002.
SILVA, J. C. et al. Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genetics & Genomes, Davis, v. 2, n. 2, p. 61-75, Feb. 2006.
SORENSEN, D.; GIANOLA, D. Likelihood, Bayesian, and MCMC methods in quantitative genetics. New York: Springer-Verlag, 2002.
STOCK, K. F.; DISTL, O. Simulation study on the effects of excluding offspring information for genetic evaluation versus using genomic markers for selection in dog breeding. Journal of Animal Breeding and Genetics, Jokioinen, v. 127, n. 1, p. 42-52, June 2009.
SYKES, R. et al. Genetic Variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. Annals of Forest Science, Les Ulis, v. 63, p. 897-904, Feb. 2006.
TONOLI, G. et al. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Industrial Crops and Products, v. 31, n.2, p. 225-232, mar. 2010.
VAN-TASSELL, C. P.; VAN-VLECK, L. D. Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference. Journal of Animal Science, Champaign, v. 74, p. 2586-2597, 1996.
WHITE, D. et al. Control of transpiration in a irrigated Eucalyptus globulus Labill. Plantation. Plant, Cell and Environment, Oxford, v. 23, n. 2, p. 123-134, Dec. 2000.
WIMMER, R. et al. Direct effects of wood characteristics on pulp and handsheet properties of Eucalyptus globulus. Holzforschung, Berlin, v. 56, n. 3, p. 244-252. 2002.
WRIGHT, D. et al. Comparing traditional and Bayesian analyses of selection experiments in animal breeding. Journal of Agricultural, Biological, and Environmental Statistics, Alexandria, v. 5, n. 2, p. 240-256June 2000.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A CIÊNCIA FLORESTAL se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da lingua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas as autoras e aos autores.
Os trabalhos publicados passam a ser propriedade da revista CIÊNCIA FLORESTAL, sendo permitida a reprodução parcial ou total dos trabalhos, desde que a fonte original seja citada.
As opiniões emitidas pelos autores dos trabalhos são de sua exclusiva responsabilidade.