Effects of deforestation on microclimate in a Cerrado-Amazonia Transition area
DOI:
https://doi.org/10.5902/1980509870199Parole chiave:
Amazon Basin, Cerrado, Climate change, Deforestation, MicroclimateAbstract
The Cerrado-Amazon Transition region has a high deforested area in Brazil. Given the importance of the forest in maintaining the climate of this region, were evaluated the patterns of micrometeorological variables in forested and deforested areas in the Cerrado-Amazon Transition region in Mato Grosso, Brazil. Precipitation, solar radiation, average, minimum and maximum air temperature, relative air humidity, soil temperature and wind speed were measured into a forest (FOR) and in a deforested area (DEF). Precipitation in the studied region has a hyper-seasonal pattern with 95% of the volume in the wet season (October to April), which influenced the seasonality of the micrometeorological variables. Solar radiation in DEF was 8-folds higher than in FOR, air temperature in DEF was up to 11% higher than in FOR, relative humidity in FOR was up to 14% higher than in DEF, soil temperature in DEF was 18% greater than in FOR and wind speed in DEF was 22-folds greater than in FOR. Deforestation significantly influenced the seasonality and magnitude of the analyzed micrometeorological variables.
Downloads
Riferimenti bibliografici
ABU-HAMDEH, N. H. Thermal Properties of Soils as affected by Density and Water Content. Biosystems Engineering, v. 86, n. 1, p. 97–102, 1 set. 2003. DOI: https://doi.org/10.1016/S1537-5110(03)00112-0
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. de M.; SPAROVEK, G. Köppen’s Climate Classification Map for Brazil. Meteorologische Zeitschrift, v. 22, p. 711–728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507
ANDERSON, D. B. Relative Humidity or Vapor Pressure Deficit. Ecology, v. 17, n. 2, p. 277–282, 1936. DOI: https://doi.org/10.2307/1931468
BIUDES, M. S.; MACHADO, N. G.; DANELICHEN, V. H. de M.; SOUZA, M. C.; VOURLITIS, G. L.; NOGUEIRA, J. de S. Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. International Journal of Biometeorology, v. 58, n. 6, p. 1181–1193, 2014a. DOI: https://doi.org/10.1007/s00484-013-0713-4
BIUDES, M. S.; SOUZA, M. C.; MACHADO, N. G.; DANELICHEN, V. H. de M.; VOURLITIS, G. L.; NOGUEIRA, J. de S. Modelling gross primary production of a tropical semi-deciduous forest in the southern Amazon Basin. International Journal of Remote Sensing, v. 35, n. 4, p. 1540–1562, 16 fev. 2014b. DOI: https://doi.org/10.1080/01431161.2013.878059
BIUDES, M. S.; VOURLITIS, G. L.; MACHADO, N. G.; ARRUDA, P. H. Z. de; NEVES, G. A. R.; LOBO, F. de A.; NEALE, C. M. U.; NOGUEIRA, J. de S. Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil. Agricultural and Forest Meteorology, v. 202, p. 112–124, 15 mar. 2015. DOI: https://doi.org/10.1016/j.agrformet.2014.12.008
BRUNET, Y. Turbulent Flow in Plant Canopies: Historical Perspective and Overview. Boundary-Layer Meteorology, v. 177, n. 2, p. 315–364, 1 dez. 2020. DOI: https://doi.org/10.1007/s10546-020-00560-7
DAI, A.; DESER, C. Diurnal and semidiurnal variations in global surface wind and divergence fields. Journal of Geophysical Research: Atmospheres, v. 104, n. D24, p. 31109–31125, 1999. DOI: https://doi.org/10.1029/1999JD900927
ELLISON, D.; MORRIS, C. E.; LOCATELLI, B.; SHEIL, D.; COHEN, J.; MURDIYARSO, D.; GUTIERREZ, V.; NOORDWIJK, M. van; CREED, I. F.; POKORNY, J.; GAVEAU, D.; SPRACKLEN, D. V.; TOBELLA, A. B.; ILSTEDT, U.; TEULING, A. J.; GEBREHIWOT, S. G.; SANDS, D. C.; MUYS, B.; VERBIST, B.; SPRINGGAY, E.; SULLIVAN, C. A. Trees, forests and water: Cool insights for a hot world. Global Environmental Change, v. 43, p. 51–61, 1 mar. 2017. DOI: https://doi.org/10.1016/j.gloenvcha.2017.01.002
FEARNSIDE, P. M. Challenges for sustainable development in Brazilian Amazonia. Sustainable Development, v. 26, n. 2, p. 141–149, 2018. DOI: https://doi.org/10.1002/sd.1725
HARDWICK, S. R.; TOUMI, R.; PFEIFER, M.; TURNER, E. C.; NILUS, R.; EWERS, R. M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, v. 201, p. 187–195, 15 fev. 2015. DOI: https://doi.org/10.1016/j.agrformet.2014.11.010
HERNANDES, J. L.; PEDRO JÚNIOR, M. J.; BARDIN, L. Variação estacional da radiação solar em ambiente externo e no interior de floresta semidecídua. Revista Árvore, v. 28, p. 167–172, abr. 2004. DOI: https://doi.org/10.1590/S0100-67622004000200002
IVO, I. O.; BIUDES, M. S.; VOURLITIS, G. L.; MACHADO, N. G.; MARTIM, C. C. Effect of Fires on Biophysical Parameters, Energy Balance and Evapotranspiration in a Protected Area in the Brazilian Cerrado. Remote Sensing Applications: Society and Environment, v. 19, p. 100342, 2020. DOI: https://doi.org/10.1016/j.rsase.2020.100342
KLINK, C.; MACHADO, R. A conservação do Cerrado brasileiro. Megadiversidade, v. 1, 1 jan. 2005.
LI, Y.; ZHAO, M.; MOTESHARREI, S.; MU, Q.; KALNAY, E.; LI, S. Local cooling and warming effects of forests based on satellite observations. Nature Communications, v. 6, n. 1, p. 6603, 31 mar. 2015. DOI: https://doi.org/10.1038/ncomms7603
LIU, L.; CHENG, Y.; WANG, S.; WEI, C.; PÖHLKER, M. L.; PÖHLKER, C.; ARTAXO, P.; SHRIVASTAVA, M.; ANDREAE, M. O.; PÖSCHL, U.; SU, H. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: relative importance of aerosol–cloud and aerosol–radiation interactions. Atmospheric Chemistry and Physics, v. 20, n. 21, p. 13283–13301, 10 nov. 2020. DOI: https://doi.org/10.5194/acp-20-13283-2020
LOPES, T. R.; MOURA, L. B.; NASCIMENTO, J. G.; FRAGA JUNIOR, L. S.; ZOLIN, C. A.; DUARTE, S. N.; FOLEGATTI, M. V.; SANTOS, O. N. A. Priority areas for forest restoration aiming at the maintenance of water resources in a basin in the Cerrado/Amazon ecotone, Brazil. Journal of South American Earth Sciences, v. 101, p. 102630, 1 ago. 2020. DOI: https://doi.org/10.1016/j.jsames.2020.102630
MARQUES, E. Q.; MARIMON-JUNIOR, B. H.; MARIMON, B. S.; MATRICARDI, E. A. T.; MEWS, H. A.; COLLI, G. R. Redefining the Cerrado–Amazonia transition: implications for conservation. Biodiversity and Conservation, v. 29, n. 5, p. 1501–1517, 1 abr. 2020. DOI: https://doi.org/10.1007/s10531-019-01720-z
MENGISTU, A. G.; VAN RENSBURG, L. D.; MAVIMBELA, S. S. W. The effect of soil water and temperature on thermal properties of two soils developed from aeolian sands in South Africa. CATENA, v. 158, p. 184–193, 1 nov. 2017. DOI: https://doi.org/10.1016/j.catena.2017.07.001
NI, J.; CHENG, Y.; WANG, Q.; NG, C. W. W.; GARG, A. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, v. 571, p. 494–502, 1 abr. 2019. DOI: https://doi.org/10.1016/j.jhydrol.2019.02.009
PERSSON, A. How Do We Understand the Coriolis Force? Bulletin of the American Meteorological Society, v. 79, n. 7, p. 1373–1386, 1 jul. 1998. DOI: https://doi.org/10.1175/1520-0477(1998)079<1373:HDWUTC>2.0.CO;2
QI, J.; ZHANG, X.; COSH, M. H. Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. Ecological Engineering, v. 129, p. 134–143, 1 abr. 2019. DOI: https://doi.org/10.1016/j.ecoleng.2019.01.017
SEAGER, R.; NAIK, N.; VECCHI, G. A. Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming. Journal of Climate, v. 23, n. 17, p. 4651–4668, 1 set. 2010. DOI: https://doi.org/10.1175/2010JCLI3655.1
STRANDBERG, G.; KJELLSTRÖM, E. Climate Impacts from Afforestation and Deforestation in Europe. Earth Interactions, v. 23, n. 1, p. 1–27, 1 fev. 2019. DOI: https://doi.org/10.1175/EI-D-17-0033.1
TIBSHIRANI, R. J.; EFRON, B. An introduction to the bootstrap. Monographs on statistics and applied probability, v. 57, p. 1–436, 1993. DOI: https://doi.org/10.1007/978-1-4899-4541-9_1
WU, J.; ZHA, J.; ZHAO, D.; YANG, Q. Changes in terrestrial near-surface wind speed and their possible causes: an overview. Climate Dynamics, v. 51, n. 5, p. 2039–2078, 1 set. 2018. DOI: https://doi.org/10.1007/s00382-017-3997-y
YAN, Y.; YAN, R.; CHEN, J.; XIN, X.; ELDRIDGE, D. J.; SHAO, C.; WANG, X.; LV, S.; JIN, D.; CHEN, J.; GUO, Z.; CHEN, B.; XU, L. Grazing modulates soil temperature and moisture in a Eurasian steppe. Agricultural and Forest Meteorology, v. 262, p. 157–165, 15 nov. 2018. DOI: https://doi.org/10.1016/j.agrformet.2018.07.011
YUAN, K.; ZHU, Q.; ZHENG, S.; ZHAO, L.; CHEN, M.; RILEY, W. J.; CAI, X.; MA, H.; LI, F.; WU, H.; CHEN, L. Deforestation reshapes land-surface energy-flux partitioning. Environmental Research Letters, v. 16, n. 2, p. 024014, jan. 2021. DOI: https://doi.org/10.1088/1748-9326/abd8f9
ZAMADEI, T.; SOUZA, A. P. de; ALMEIDA, F. T. de; ESCOBEDO, J. F. Daily Global and diffuse radiation in the Brazilian Cerrado-Amazon transition region. Ciência e Natura, v. 43, p. e37–e37, 15 abr. 2021. DOI: https://doi.org/10.5902/2179460X39775
ZHOU, Y.; SUN, X.; ZHU, Z.; ZHANG, R.; TIAN, J.; LIU, Y.; GUAN, D.; YUAN, G. Surface roughness length dynamic over several different surfaces and its effects on modeling fluxes. Science in China Series D: Earth Sciences, v. 49, n. 2, p. 262–272, 1 nov. 2006. DOI: https://doi.org/10.1007/s11430-006-8262-x
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2023 Ciência Florestal

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale 4.0 Internazionale.
A CIÊNCIA FLORESTAL se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da lingua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas as autoras e aos autores.
Os trabalhos publicados passam a ser propriedade da revista CIÊNCIA FLORESTAL, sendo permitida a reprodução parcial ou total dos trabalhos, desde que a fonte original seja citada.
As opiniões emitidas pelos autores dos trabalhos são de sua exclusiva responsabilidade.