ANÁLISIS MORFOLÓGICO Y GENÉTICO DE Triplaris guayaquilensis Wedd (POLYGONACEAE): UN ÁRBOL NATIVO DE ECUADOR

Authors

  • José Enrique Nieto-Rodríguez UFSM - Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
  • Sanjuana Hernández-Delgado
  • Netzahualcoyotl Mayek-Pérez

DOI:

https://doi.org/10.5902/198050989286

Keywords:

Fernan Sanchez, forest genetic resources, genetic variability, molecular markers.

Abstract

http://dx.doi.org/10.5902/198050989286

In this paper, we assessed six native populations (55 trees) of Triplaris guayaquilensis Wedd (Fernan Sanchez), one of the major forest species from Ecuador, using morphological and AFLP (Amplified Fragment Length Polymorphisms) data. The populations were collected through two macro-sites (Central coastals: Quevedo, Ventanas, la Guayas; Andean surroundings: la Maná, Patricia Pilar, Pichincha). The populations showed the following traits: straight shaft (66%); round, irregular top shape (50%); and branch insertion angle 0° - 30° (86%). Four qualitative (straight shape, type of leaf edge, leaf width and leaf pubescence) and four quantitative (commercial tree height, basal area, commercial volume and total volume) traits were the most explicative traits present after Principal Component Analysis (PCA). PCA separated populations into two groups: one group included populations from Central Coastals which showed morphological traits highly and positively correlated with wood production, and the other group included populations with lower tree growth from the Andean surroundings. Populations from Central Coastals showed the highest values of genetic diversity indexes, AFLP markers separated populations based on the macro site of origin. For K = 2 Bayesian analysis separated FS populations into two groups; two populations from Central Coastals region and the other four the Andean surroundings region (3) and 1 from Central Coastals (La Guayas). For greater K values, the genetic fragmentation of populations by origins was evident since for K = 5 four groups were performed: one including populations from Quevedo and Ventanas and other from La Guayas (Coastals), the third group included trees from La Mana and Pichincha and the fourth, from Patricia Pilar (Andean surroundings). Results suggested the constant and effective genetic recombination or the genetic flow among and within Fernan Sanchez populations with a clear tendency towards genetic differentiation.

Downloads

Download data is not yet available.

References

AGUIRRE, Z.; LARS, P. Composición florística y estado de conservación de los bosques secos del sur- Occidente del Ecuador. Lyonia, Honolulu, v. 8, n. 1, p. 41-67. Jul. 2005.

BONIN, A. et al. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology, Chichester, v. 16, n. 18, p. 3737-3758. Sept. 2007.

CANCHIGNIA-MARTÍNEZ, H. F. et al. Genetic relationships among Schizolobium parahybum (Vell.) Blake (Leguminosae) ecotypes from Ecuador and other countries. Silvae Genetica, Frankfurt, v. 56 n. 5, p. 214-221, Nov. 2007.

CAÑADAS, L. C.; ESTRADA, W. A. Ecuador-Mapa Bioclimático. Ministerio de Agricultura y Ganadería. Programa Nacional de Regionalización Agraria Departamento de Ecología. Quito, Ecuador. 1986

CAVERS, S. et al. A combination of molecular markers identifies evolutionarily significant units in Cedrella odorata L. (Meliaceae) in Costa Rica. Conservation Genetics, Dordrecht, v. 4, n. 5, p. 571–580. Sept. 2003.

DE LA TORRE, A. et al. Genetic (AFLP) diversity of nine Cedrela odorata populations in Madre de Dios, southern Peruvian Amazon. Forest Ecology and Management, Amsterdam, v. 255, n. 2, p. 334–339, March 2008.

DÍAZ, V. et al. Random amplified polymorphic DNA and amplified fragment length polymorphism assessment of genetic varation in Nicaragua populations of Pinus oocarpa. Molecular Ecology, Chichester, v. 10, n. 11, p. 2593-2603, Nov. 2001.

EVANNO, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, Chichester, v. 14, n. 8, p. 2611–2620, Aug. 2005.

EXCOFFIER, L. et al. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, v. 1, n. 1, p. 47-50, Feb. 2005.

GILLIES, A. et al. Genetic variation in Costa Rican populations of Spanish cedar. Molecular Ecology, Chichester, v. 6, n. 12, p. 1133–1145, Dec. 1997.

HAIR, J. F. et al. Multivariate Data Analysis with Readings. Fourth edition. Prentice-Hall, Englewood Cliffs, 1995. 708 p.

HAMPL, V. et al. Concordance between genetic relatedness and phenotypic similarities of Trichomonas sp. BMC Evolution Biology, London, v. 1, p. 11, Nov. 2001

HOLDRIGE, L.R. Ecología Basada en Zonas de Vida. Instituto Interamericano para la Cooperación en la Agricultura. San José. 1982. 216 p.

HUFF, D. et al. RAPD variation whitin and among natural populations of outcrossing buffalo grass [Buchoe dayloides (Nutt) Engelm]. Theoretical and Applied Genetics, Heidelberg, v. 86, n. 8, p. 927-934, Sept. 1993.

JORGENSEN, P.; LEÓN, S. Y. Catalogue of the Vascular Plants of Ecuador. Missouri Botanical Garden. Saint Louis, 1999.1181 p.

LEOPOLD, H. et al. Descriptores Morfológicos de Especies Forestales Maderables de Sud América. Consejo Nacional Forestal (CONAF). Santiago, 2001.

LI, F. et al. RAPD and morphological diversity among four populations of the tropical tree species Paramichelia baillonii (Pierre) Hu in China. Forest Ecology and Management, Amsterdam, v. 255, n. 5/6, p. 1793-1801, Ap.l 2008.

LITTLE, E. L.; DIXON, R. G. Árboles Comunes de la Provincia de Esmeraldas, Ecuador. United Nations Development Program and Food and Agriculture Organization. Rome, 1969. 536 p.

LOWE, A. J. et al. Fine-scale genetic structure and gene flow within Costa Rican populations of mahogany (Swietenia macrophylla). Heredity, Sheffield, v. 90, n. 3, p. 268-275, March 2003.

MIRANDA, R. et al. La mejora genética del ‘Pino Carrasco’ (Pinus halepensis Mill). Cuadernos de la Sociedad Española de Ciencias Forestales, Madrid, v. 10, n. 1, p. 19-27, 2000.

NAMKOOG, G.; KOSHY, M. Application of Genetic Markers to Forest Tree Species. Draft report to IPGRI of the project ‘Developing Decision-Making Strategies on Priorities for conservation and Use of Forest Genetic Resources’ IPGRI. Rome, 2001. 26 p.

NEI, M.; KUMAR, S. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford, 2000. 333 p.

NEI, M.; LI, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA, Washington, v. 76, n. 10, p. 5269-5273. Oct. 1979.

NIETO-RODRÍGUEZ, J. E. Diversidad Genética de 12 Ecotipos de Teca (Tectona grandis L.) del Litoral Ecuatoriano. M.Sc. Thesis. Universidad Internacional de Andalucía. Huelva, Feb. 2010. 50 p.

ORDÓÑEZ, O. et al. Las Fuentes Semilleras y Semillas Forestales Nativas de Loja y Cañar: Participación Social en el Manejo. Fundación Ecológica ‘Arco Iris’- ASOCAM. Loja, 2005. 80 p.

PAGE, R. D. TreeView. Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences. University of Glasgow. Glasgow, Scotland. Available in: http://taxonomy.zoology.gla.ac.uk/rod/treeview.html, 2000.

POWELL, W. et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellites) marker for germoplasm analysis. Molecular Breeding, Heidelberg, v. 2, n. 3, p. 225-238, Sept. 1996.

PRITCHARD, J. et al. Inference of population structure using multilocus genotype data. Genetics, Bethesda, v. 155, n. 2, p. 945-959. June 2000

RIVERA-OCASIO, E. et al. Patterns of genetic diversity and biogeographical history of the tropical wetland tree, Pterocarpus officinales (Jacq.), in the Caribbean basin. Molecular Ecology, Chichester, v. 11, n. 4, p. 675-683, Apr. 2002.

SCHNEIDER, S. et al. Arlequin version 1.1: A software for population genetic data analysis. Genetics and Biometry Laboratory. University of Geneva, Geneva, 1997.

STATSOFT Inc. STATISTICA for Windows [Computer program manual]. Version 7.0. Tulsa, 2004.

THOMAS, B. R. et al. Effects of reforestation methods on genetic diversity of lodge pole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theoretical and Applied Genetics, Heidelberg, v. 98, n. 5, p. 793-801, Apr. 1999.

VALLEJO, L.M.; MALDONADO, E.C. Mapa General de Suelos del Ecuador. Sociedad Ecuatoriana de la Ciencia del Suelo. Quito, 1987.

VALVERDE, F. Estado Actual de la Vegetación Natural de la Cordillera Chongon-Colonche. Guayaquil, Universidad de Guayaquil, 1991, 387 p.

VOS, P. et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, Oxford, v. 23, n. 21, p. 4407-4414, Nov. 1995.

Downloads

Published

2013-06-28

How to Cite

Nieto-Rodríguez, J. E., Hernández-Delgado, S., & Mayek-Pérez, N. (2013). ANÁLISIS MORFOLÓGICO Y GENÉTICO DE Triplaris guayaquilensis Wedd (POLYGONACEAE): UN ÁRBOL NATIVO DE ECUADOR. Ciência Florestal, 23(2), 415–426. https://doi.org/10.5902/198050989286

Issue

Section

Articles