Furfurylated <i>Pinus</i> sp. wood resistance to the action of xylophagous fungus <i>Rhodonia placenta</i> in laboratory
DOI:
https://doi.org/10.5902/1980509892634Keywords:
Wood treatment, Impregnation, Furfuryl alcohol, Brown rot diseaseAbstract
Although wood is a renewable resource, it is subject to deterioration processes that require preservative treatment applications to increase its durability. Despite its several advantageous properties, pine wood is susceptible to many wood-eating organisms; therefore, it is essential applying preservatives to optimize its use. Accordingly, the aim of the present study ia to assess the efficiency of pine wood treatment with furfuryl alcohol to improve its resistance against wood-eating fungus Rhodonia placenta under laboratory conditions. Seventy-five (75) specimens were produced and subjected to five treatments, including the control, fifteen replicates and four different FA concentrations (10%, 25%, 50% and 100%). The samples were subjected to R. placenta under laboratory conditions. All FA concentrations were capable of increasing pine wood resistance against this fungus; it significantly reduced mass loss in comparison to untreated wood. In conclusion, furfuryl alcohol protected Pinus sp. wood against R. placenta action under laboratory conditions, at any tested concentrations.
Downloads
References
ALFREDSEN, G.; FOSSDAL, C. G.; NAGY, N. E.; JELLISON, J. GOODELL, B. Furfurylated wood: impact on Postia placenta gene expression and oxalate crystal formation. De Gruyter, v. 70, p. 947–962, 2016. DOI: https://doi.org/10.1515/hf-2015-0203
AMERICAN WOOD PROTECTION ASSOCIATION STANDARD. AWPA E10-16. Laboratory method for evaluating the decay resistance of wood-based materials against pure basidiomycete cultures: soil/block test. EUA: AWPA, 2016.
AMERICAN WOOD PROTECTION ASSOCIATION STANDARD. AWPA E30-16. Standard method for evaluating natural decay resistance of wood using laboratory decay tests. EUA: AWPA, 2016.
APPEL, J. S. L.; TERESCOVA, V.; RODRIGUES, V. C. B.; VARGAS, V. M. F. Aspectos toxicológicos do preservativo de madeira CCA (arseniato de cobre cromatado): revisão. Revista Brasileira de Toxicologia, v. 19, n. 1, p. 33-47, 2006.
AYRES, M.; AYRES Jr, M.; AYRES, D. L. SANTOS, A. A. A. BioEstat 5.0 – Aplicações Estatísticas nas Áreas das Ciências Biológicas e Médicas. Sociedade Civil Mamirauá, Tefé, 380p., 2007.
BECK, G.; HILL, C.; COCHER, P. M.; ALFREDSEN, G. Accessibility of hydroxyl groups in furfurylated wood at diferent weight percent gains and during Rhodonia placenta decay. European Journal of Wood and Wood Products, v. 77, p. 953-955, 2019. DOI: https://doi.org/10.1007/s00107-019-01445-4
CRUZ-LOPES, L.; SELL, M.; LOPES, R.; ESTEVES, B. Enhancing Pinus pinaster Wood Durability Through Citric Acid Impregnation. Sustainability, v. 17, p. 1-16, 2025. DOI: https://doi.org/10.3390/su17051979
COIMBRA, M. C. R.; BRAZIL, T. R.; MORGADO, G. F. M.; MARTINS, E. F.; ANJOS, E. G. R.; OYAMA, I. M. C. RODRIGUES, J. S.; BOTARO, V. R.; MONTAGNA, L. S.; REZENDE, M. C. Estabelecimento de rota síntese da resina furfurílica em meio ácido visando minimizar a exotermia da reação. Matéria, v. 27, n. 3, p. 1–16, 2022. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0054
ESTEVES, B.; NUNES, L.; PEREIRA, H. Properties of furfurylated wood (Pinus pinaster). European Journal of Wood and Wood Products, v. 69, p. 521-525, 2010. DOI: https://doi.org/10.1007/s00107-010-0480-4
GALLIO, E.; ZANATTA, P.; CRUZ, N. D. Influência dos tratamentos de termorretificação e furfurilação em propriedades tecnológicas de uma conífera. Revista Matéria, v. 24, n. 03, 2019. DOI: https://doi.org/10.1590/s1517-707620190003.0739
LADEIRA, L. A.; PEREIRA, C. C. A.; COUTO, L. C. Determinação das propriedades físicas da madeira de Pinus. sp. Brazilian Applied Science. v. 2, n. 7, Edição Especial, p. 2244-2251, 2018. DOI: https://doi.org/10.34115/basr.v2i7.637
LANDE, S., WESTIN, M., SCHNEIDER, M. Properties of furfurylated wood. Scandinavian Journal of Forest Research, v. 19, p. 22-30, 2004a. DOI: https://doi.org/10.1080/0282758041001915
LANDE, S.; WESTIN, M.; SCHNEIDER, M. H. Eco-efficient wood protection: furfurylated wood as alternative to traditional wood preservation. Management of Environmental Quality: An International Journal, v. 15, p. 529-540, 2004b. DOI: https://doi.org/10.1108/14777830410553979
LANDE, S.; WESTIN, M.; SCHNEIDER, M. H. Development of modified wood products based on furan chemistry. Molecular Crystals and Liquid Crystals, v. 484, p. 367–378, 2008. DOI: https://doi.org/10.1080/15421400801901456
LEPAGE, E.; SALIS A. G.; GUEDES, E. C. R. Tecnologia de proteção da madeira. São Paulo: Montana Química, 225 p., 2017.
MANTANIS, G. I. Chemical Modification of Wood by Acetylation or Furfurylation: A Review of the Present Scaled-up Technologies. BioResources, v. 12, p. 4478–4489, 2017. DOI: https://doi.org/10.15376/biores.12.2.Mantanis
MARISCAL, R.; MAIRELES-TORRES, P.; OJEDA, M.; SÁDABA, I.; GRANADOS, M. L. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, v. 9, p. 1144–1189, 2016. DOI: https://doi.org/10.1039/C5EE02666K
MAYOWA, O. J.; ESTHER, F. O.; ADEYEMI, I. E. An Analysis of Impact of Furfurylation Treatments on the Physical and Mechanical Properties of Pterygota macrocarpa Wood. Journal of Materials Science Research and Reviews, v. 11, Ed. 1, p. 6-23, 2023.
NORDSTIERNA L.; LANDE S.; WESTIN M.; KARLSSON O.; FURO I. Towards novel wood-based materials: chemical bonds between lignin-like model molecules and poly (furfuryl alcohol) studied by NMR. Holzforschung, v. 62, p. 709–713, 2008. DOI: https://doi.org/10.1515/HF.2008.110
PILGÅRD, A.; TREU, A.; VAN ZEELAND, A. N. T.; GOSSELINK, R. J. A.; WESTIN, M. Toxic hazard and chemical analysis of leachates from furfurylated wood. Environmental Toxicology and Chemistry, v. 29, n. 9, p. 1918–1924, 2010. DOI: https://doi.org/10.1002/etc.244
SANDBERG, D.; KUTNAR, A.; MANTANIS, G. Wood modification technologies - a review. I Forest, v.10, p.895-908, 2018. DOI: https://doi.org/10.3832/ifor2380-010
SANTOS, C. E., CANDATEN, L., DA SILVA, P. R. B., TREVISAN, R. Madeira preservada com CCA: proficuidade, potencial deletério, toxicidade dos resíduos e tecnologias de recuperação. Revista em Agronegócio e Meio Ambiente, v. 15, n. 1, p. 153-166, 2022. DOI: https://doi.org/10.17765/2176-9168.2022v15n1e8871
SEJATI, P. S.; IMBERT, A.; GÉRARDIN-CHARBONNIER, C.; DUMARÇAY, S.; FREDON, E.; MASSON, E.; NANDIKA, D.; PRIADI, T.; GÉRARDIN, P. Tartaric acid catalyzed furfurylation of beech wood. Wood Science and Technology, v. 51, p. 379–394, 2016. DOI: https://doi.org/10.1007/s00226-016-0871-8
SCHULZ, H. R.; GALLIO, E.; ACOSTA, A. P. Efeito da furfurilação em propriedades físicas e mecânicas da madeira de Pinus elliottii. Revista Matéria, v. 24, n. 03, 2019. DOI: https://doi.org/10.1590/s1517-707620190003.0756
SCHULZ, H. R; ACOSTA, A. P.; BARBOSA K. T.; GALLIO, E.; BELTRAMEN, R.; GATTO, D. A. Efeito do tratamento térmico da madeira de Pinus elliottii nos parâmetros físico-mecânicos e colorimétricos. BIOFIX Scientific Journal, v. 5, p. 86-93, 2020. DOI: https://doi.org/10.5380/biofix.v5i1.68111
SKREDE, I.; SOLBAKKEN, M. H.; HESS, J.; FOSSDAL, C. G.; HEGNAR, O. ALFREDSEN, G. Wood Modification by Furfuryl Alcohol Caused Delayed Decomposition Response in Rhodonia (Postia) Placenta. Applied and Environmental Microbiology, 2019. DOI: https://doi.org/10.1101/454868
THYGESEN, L. G.; EHMCKE, G.; BARSBERG, S.; PILGÄRD, A. Furfurylation result of Radiata pine depends on the solvent. Wood, Science and Technology, v. 54, p. 929 – 942, 2020. DOI: https://doi.org/10.1007/s00226-020-01194-1
THYGESEN, L. G.; BECK, G.; NAGY, N. E.; ALFREDSEN, A. Cell wall changes during brown rot degradation of furfurylated and acetylated wood. International Biodeterioration & Biodegradation, v. 162 p. 1-10, 2021. DOI: https://doi.org/10.1016/j.ibiod.2021.105257
TREVISAN, H.; DE SOUZA, T. S.; DA ROCHA, N. F.; DE CARVALHO, A. G. Reflexões sobre o ensino em proteção e deterioração de madeiras nos cursos de Engenharia Florestal do Brasil. In: ENGENHARIA FLORESTAL: DESAFIOS, LIMITES E POTENCIALIDADE. Editora Científica Digital, 2020. p. 731-758. DOI: https://doi.org/10.37885/200700690
VIDAL, J. M.; EVANGELISTA, W. V.; SILVA, J. C.; JANKOWSKY, I. P. Preservação de madeiras no Brasil: histórico, cenário atual e tendências. Ciência Florestal, v. 25, n. 1, p. 257–271, 2015. DOI: https://doi.org/10.5902/1980509817484
YANG, T.; ZHONG, H.; XU, C.; LUO, D.; MEI, C. Fabrication and mechanism analysis of wood polymer composites with improved hydrophobicity, dimensional stability and mechanical strength. Cellulose, v. 30, p. 3099-3112, 2023. DOI: https://doi.org/10.1007/s10570-023-05056-4
ZELINKA, S. L.; ALTGEN, M.; EMMERICH, L.; GUIGO, N.; KEPLINGER, T.; KYMALAINEN, M.; THYBRING, E. E.; THYGESEN, L. G. Review of wood modification and wood functionalization technologies. Forests, v. 13. p. 1-46, 2022. DOI: https://doi.org/10.3390/f13071004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência Florestal

This work is licensed under a Creative Commons Attribution 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.


