Evaluation of atmospheric emissions and ash generated from co-firing of mineral coal with forest residues

Authors

DOI:

https://doi.org/10.5902/1980509883749

Keywords:

Co-firing, Biomass, Fluidized bed, Atmospheric emissions, Ash characterization

Abstract

The research on alternative energy sources has been motivated by the environmental impacts of non-renewable fuels, which involve polluting gases such as CO2, CO, SO2, and NOx. One of the main means of generating sustainable energy using solid fuels is the co-firing of organic waste (biomass) with coal, combined with fluidized bed technology. The aim of this study was to evaluate emissions resulting from the co-combustion of coal and residual organic materials in a 0.25 MWt pilot plant, which consisted of a bubbling fluidized bed reactor (BFBR). In this work, two types of residual biomass from southern Brazil, black wattle bark residue and eucalyptus wood chips, were used.The coal utilized in this study has high levels of sulfur and was sourced from the Candiota mine (CC). By employing a mixture of 75 % RCA and 25 % CC in the reactor feed, gaseous emissions were produced with SO2 concentrations below the limit established by the environmental legislation (400 mg/Nm3), resulting in a 90 % reduction compared to the emissions generated from the combustion of pure CC. Tests of co-combustion of biomass with coal demonstrated that concentrations of NOx and CO remained below the emission limit allowed by environmental legislation. The ashes generated during co-combustion processes had high melting temperature values (above 1280 ºC), which reduces the risk of problems with encrustation and equipment clogging.

Downloads

Download data is not yet available.

Author Biographies

Felipe de Aguiar de Linhares, Federal University of Rio Grande do Sul

Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Chemical Engineer, Master in Chemical Engineer

Engenheiro Químico, Mestre em Engenharia Química

Keila Guerra Pacheco Nunes, Federal University of Rio Grande do Sul

Formada em Engenharia Química pela UFRGS, possui mestrado e doutorado na área de cinética química e catálise de processos envolvendo combustão de carvão mineral. Atualmente é pesquisadora no Laboratório de Separação e Operações Unitárias - LASOP - na UFRGS. Tem como área de atuação estudos na área de tratamento de efluentes líquidos e gestão de resíduos industriais, processos de adsorção e regeneração de adsorventes, desenvolvimento de adsorventes alternativos e estudos de processos oxidativos avançados.

Pedro Juarez Melo, Federal University of Rio Grande do Sul

Possui graduação em Engenharia Química pela Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS (1986); Especialização em Processamento Petroquímico - CENPEQ / Petrobras/UFRGS (1987/1988); Mestrado em Engenharia pela Universidade Federal do Rio Grande do Sul - UFRGS (1994) e Doutorado em Engenharia pela Universidade Federal do Rio Grande do Sul - UFRGS (2003). Atualmente é professor do Departamento de Engenharia Química - DEQUI da Universidade Federal do Rio Grande do Sul - UFRGS. Tem experiência na área de Engenharia Química: em indústrias de Petróleo, Petroquímica, Processamento de polímeros e Controle de corrosão em equipamentos industriais, atuando principalmente nos seguintes temas: Projetos de engenharia básica em petroquímica e petróleo, Ensino superior (graduação e pós-graduação), Pesquisa e extensão (Projetos de cooperação empresa-escola). (Texto informado pelo autor)

Nilson Romeu Marcilio, Federal University of Rio Grande do Sul

Full Professor at the Federal University of Rio Grande do Sul (Porto Alegre - Brazil). Has experience in Chemical Engineering, focusing on Chemical Kinetics and Catalysis, acting on the following subjects: catalysis, conversion of olefins, hydrogen production and biomass conversion, thermal treatment of industrial solid waste, recovery of chromium from incineration ash from the leather-footwear sector, catalytic dehydrogenation of olefins, oxy-combustion of fluidized bed mineral coals, gas purification using polymer membranes, obtaining zeolites from mineral coal ashes and biomass ashes, among others. Ph.D. in Kinetic and Catalysis at Université Claude Bernard Lyon- Institut de Recherches Sur la Catalyse (1989), Master in Chemical Engineering from Federal University of Rio de Janeiro (1979) and Chemical Engineer from Federal University of Rio Grande do Sul - Brazil (1973).

References

ASADIERAGHI, M.; WAN DAUD, W. M. A. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Conversion and Management, v. 82, p. 71–82, 2014. DOI: http://dx.doi.org/10.1016/j.enconman.2014.03.007. DOI: https://doi.org/10.1016/j.enconman.2014.03.007

ÁVILA, I.; CRNKOVIC, P. M.; LUNA, C. M. R.; MILIOLI, F. E. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature. Applied Thermal Engineering, v. 114, p. 984–992, 2017. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.171

ATIMTAY, A. T.; KAYNAK, B. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed. Fuel Processing Technology, v. 89, p. 183-197, 2008. DOI: https://doi.org/10.1016/j.fuproc.2007.09.007

CRELLING, J. C.; HIPPO, E. J.; WOERNER, B. A.; WEST, D. P. Combustion characteristics of selected whole coals and macerals. Fuel, v. 71, n. 2, p. 151–158, 1992. DOI: https://doi.org/10.1016/0016-2361(92)90003-7

CHENG, J.; ZHOU, J.; LIU, J.; ZHOU, Z.; HUANG, Z.; CAO, X.; ZHAO, X.; CEN, K. Sulfur removal at high temperature during coal combustion in furnaces: A review. Progress in Energy and Combustion Science, v. 29, n. 5, p. 381–405, 2003. DOI: https://doi.org/10.1016/S0360-1285(03)00030-3

DUMORTIER, J, Co-firing in coal power plants and its impact on biomass feedstock availability, Energy Policy, v, 60, p, 396–405, 2013. DOI: https://doi.org/10.1016/j.enpol.2013.05.070

EDREIS, E. M. A.; LUO, G.; LI, A.; CHAO, C.; HU, H.; ZHANG, S.; GUI, B.; XIAO, L.; XU, K.; ZHANG, P.; YAO, H. CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique. Bioresource Technology, v. 136, p. 595–603, 2013. DOI: http://dx.doi.org/10.1016/j.biortech.2013.02.112. DOI: https://doi.org/10.1016/j.biortech.2013.02.112

EOM, I, Y.; KIM, K. H.; KIM, J.Y.; LEE, S.M.; YEO, M. H.; CHOI I.G.; CHOI, J.W. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents, Bioresource Technology, v, 102, n, 3, p, 3437–3444, 2011. DOI: https://doi.org/10.1016/j.biortech.2010.10.056

FAÉ GOMES, G. M.; VILELA, A. C. F.; ZEN, L. D.; OSÓRIO, E. Aspects for a cleaner production approach for coal and biomass use as a decentralized energy source in southern Brazil. Journal of Cleaner Production, v. 47, p. 85–95, 2013. DOI: http://dx.doi.org/10.1016/j.jclepro.2012.09.037. DOI: https://doi.org/10.1016/j.jclepro.2012.09.037

FEPAM. Controle de Emissoes Atmosfericas para Fontes Fixas. Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler/RS (FEPAM), Diretriz, p. 33, 2020.

FLEGKAS, S.; BIRKELBACH, F.; WINTER, F.; FREIBERGER, N.; WERNER, A. Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations. Energy, v. 143. p. 615–623, 2020. DOI: https://doi.org/10.1016/j.energy.2017.11.065

GIESBRECHT, B. M.; COLDEBELLA, R.; GENTIL, M.; NUNES, G. R. S.; FINGER, M. R.; JARDIM, J.; PEDRAZZI, C.; CARDOSO, G. V. Performance da madeira de Acacia mearnsii De Wild para polpação kraft. Ciência Florestal, v. 32, n. 1, p. 266–286, 2022. DOI: https://doi.org/10.5902/1980509850295. DOI: https://doi.org/10.5902/1980509850295

GOLDFARB, J, L.; CEYLAN, S. Second-generation sustainability: Application of the distributed activation energy model to the pyrolysis of locally sourced biomass–coal blends for use in co-firing scenarios, Fuel, v. 160. p. 297–308, 2015. DOI: https://doi.org/10.1016/j.fuel.2015.07.071

HENNE, R. A.; BRAND, M. A.; SHEIN, V. A. S.; PEREIRA, E. R.; SCHVEITZER, B. Characterization of Ashes From Forest Biomass Combustion in Boilers: A Systemic View of Potential Applications. Floresta, Curitiba, PR, v. 50, n. 1, p. 1073 - 1082, jan/mar 2020. DOI: https://doi.org/ 10.5380/rf.v50 i1.61229. DOI: https://doi.org/10.5380/rf.v50i1.61229

HUANG, Y. F.; KUAN, W. H.; CHIUEH, P. T.; LO, S. L. Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS). Bioresource Technology, v. 102, n. 3, p. 3527–3534, 2011. DOI: https://doi.org/10.1016/j.biortech.2010.11.049

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Produção da extração vegetal e da silvicultura 2015. Produção da extração vegetal e da silvicultura, v, 30, p, 48, 2016.

INTERNATIONAL ENERGY AGENCY. Coal. Available from: http://www.iea.org/topics/coal/. Accessed in: 18 ago. 2021.

JIANG, L.; HU, S.; SUN, L.S.; SU, S.; XU, K.; HE, L.M.; XIANG, J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass, Bioresource Technology, v, 146, p, 254–260, 2013. DOI: https://doi.org/10.1016/j.biortech.2013.07.063

LIU, H.; CHANEY, J.; LI, J.; SUN, C. Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel, v. 103, p. 792-798, 2013. DOI: https://doi.org/10.1016/j.fuel.2012.10.028

MADANAYAKE, B.; N.; GAN, S.; EASTWICK, C.; NG, H.; K. Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Processing Technology, v. 159, p. 287-305, 2017. DOI: https://doi.org/10.1016/j.fuproc.2017.01.029

KHAN, A. A.; DE JONG, W.; JANSENS, P. J.; SPLIETHOFF, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Processing Technology, v. 90, n. 1, p. 21–50, 2009. DOI: http://dx.doi.org/10.1016/j.fuproc.2008.07.012. DOI: https://doi.org/10.1016/j.fuproc.2008.07.012

KUMAR, H.; MOHAPATRA, S, K.; SINGH, R. I. Study of a 30 MW bubbling fluidized bed combustor based on co-firing biomass and coal. Sadhana - Academy Proceedings in Engineering Sciences, v, 40, n, 4, p, 1283–1299, 2015. DOI: https://doi.org/10.1007/s12046-015-0361-y

KUPRIANOV, V. I.; JANVIJITSAKUL, K.; PERMCHART, W. Co-firing of sugar cane bagasse with rice husk in a conical fluidized-bed combustor, Fuel, v, 85, n, 4, p, 434–442, 2006. DOI: https://doi.org/10.1016/j.fuel.2005.08.013

MAGGI, B.; NOVACKI, E. R.; ARAÚJO, W. V.; ANJOS, J. M.; SALOMÃO, J. A. F. Plano Nacional de desenvolvimento de Florestas Plantadas. Brasil, Ministério da Agricultura, Pecuária e Abasteciemnto, p. 52, 2018.

NUNES, K. G. P.; OSÓRIO, E.; MARCÍLIO, N. R. Kinetics of the Oxy-fuel Combustion of High-Ash-Content Coal from the Candiota Mine, Rio Grande do sul. Energy and Fuels, v. 30, n. 3, p. 1958–1964, 2016. DOI: https://doi.org/10.1021/acs.energyfuels.5b02247

NUNES, L. J. R.; GODINA, R.; MATIAS, J. C. O.; CATALÃO, J. P. S. Evaluation of the utilization of woodchips as fuel for industrial boilers. Journal of cleaner production, v. 223, p. 270–277, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.03.165

NUNES, L. J. R.; MATIAS, J. C. O.; CATALÃO, J. P. S. Biomass waste co-firing with coal applied to the Sines Thermal Power Plant in Portugal, Fuel, v, 132, p, 153–157, 2014. DOI: https://doi.org/10.1016/j.fuel.2014.04.088

PÉCORA, A. A. B. B.; ÁVILA, I.; LIRA, C. S.; CRUZ, G.; CRNKOVIC, P. M. Prediction of the combustion process in fluidized bed based on physical-chemical properties of biomass particles and their hydrodynamic behaviors. Fuel Processing Technology, v. 124, p. 188–197, 2014. DOI: http://dx.doi.org/10.1016/j.fuproc.2014.03.003. DOI: https://doi.org/10.1016/j.fuproc.2014.03.003

RIZVI, T.; XING, P.; POURKASHANIAN, M.; DARVELL, L. I.; JONES, J. M.; NIMMO, W. Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel, v. 141, p. 275-284, 2015. DOI: https://doi.org/10.1016/j.fuel.2014.10.021

RUHUL KABIR, M.; KUMAR, A. Comparison of the energy and environmental performances of nine biomass/coal co-firing pathways, Bioresource Technology, v, 124, p, 394–405, 2012. DOI: https://doi.org/10.1016/j.biortech.2012.07.106

SAIDUR, R.; ABDELAZIZ, E. A.; DEMIRBAS, A.; HOSSAIN, M.S.; MEKHILEF, S. A review on biomass as a fuel for boilers. Renewable and sustainable energy reviews, v. 15, n. 5, p. 2262–2289, 2011. DOI: https://doi.org/10.1016/j.rser.2011.02.015

SANCHEZ-SILVA, L.; LÓPEZ-GONZÁLEZ, D.; VILLASEÑOR, J.; SÁNCHEZ, P.; VALVERDE, J. L. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, v. 109, p. 163–172, 2012. DOI: http://dx.doi.org/10.1016/j.biortech.2012.01.001. DOI: https://doi.org/10.1016/j.biortech.2012.01.001

SHAO, Y.; J.; WANG, J.; PRETO, F.; ZHU XU, C. Ash deposition in biomass combustion or co-firing for power/heat generation. Energies, v. 5, n. 12, p. 5171–5189, 2012. DOI: https://doi.org/10.3390/en5125171

SILVA FILHO, C. G. da; MILIOLI, F. E. A thermogravimetric analysis of the combustion of a Brazilian mineral coal. Quimica Nova, v. 31, n. 1, p. 98–103, 2008. DOI: https://doi.org/10.1590/S0100-40422008000100021

SOUZA, C. de O.; ARANTES, M. D. C.; PINTO, J. de A.; SILVA, J. G. M. da; CARNEIRO, M. F.; LIMA, A. C. B. de; PASSOS, R. R. Qualidade dos resíduos madeireiros de mogno-africano e eucalipto para briquetagem. Ciência Florestal, v. 32, n. 2, p. 637–652, 2022. DOI: https://doi.org/10.5902/1980509843299. DOI: https://doi.org/10.5902/1980509843299

SUN, P.; HUI, S.; GAO, Z.; ZHOU, Q.; TAN, H.; ZHAO, Q.; XU, T. Experimental investigation on the combustion and heat transfer characteristics of wide size biomass co-firing in 0.2 MW circulating fluidized bed. Applied Thermal Engineering, v. 52, 284-292, 2013. DOI: https://doi.org/10.1016/j.applthermaleng.2012.12.009

TEIXEIRA, J. M. C.; SILVA, S. A.; PINHEIRO, H. S.; NOGUEIRA, R.E.F.Q.; ALBUQUERQUE, J. S. V.; PINHO, R.G. Estudo dos produtos da combustão do Carvão mineral visando seu aproveitamento como material cerâmico, Anais Congresso Técnico da Engenharia e da Agronomia, n, 1, 2015.

VAMVUKA, D.; KAKARAS, E.; KASTANAKI, E.; GRAMMELIS, P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel, v. 82, n. 15–17, p. 1949–1960, 2003. DOI: https://doi.org/10.1016/S0016-2361(03)00153-4

VAMVUKA, D.; SFAKIOTAKIS, S.; KOTRONAKIS, M. Fluidized bed combustion of residues from oranges ’ plantations and processing. Renewable Energy, v.44, p. 231-237, 2012. DOI: https://doi.org/10.1016/j.renene.2012.01.083

VAN DE VELDEN, M.; BAEYENS, J.; BREMS, A.; JANSSENS, B.; DEWIL, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, v. 35, n. 1, p. 232–242, 2010. DOI: http://dx.doi.org/10.1016/j.renene.2009.04.019. DOI: https://doi.org/10.1016/j.renene.2009.04.019

VAN LOO, S.; KOPPEJAAN, J. The Handbook of Biomass Combustion and Co-firing. Earthscan, 2008.

VAROL, M.; ATIMTAY, A. T.; OLGUN, H.; ATAKÜL, H. Emission characteristics of co-combustion of a low calorie and high sulfur-lignite coal and woodchips in a circulating fluidized bed combustor: Part 1. Effect of excess air ratio. Fuel, v. 117, n. PART A, p. 792–800, 2014. DOI: http://dx.doi.org/10.1016/j.fuel.2013.09.051. DOI: https://doi.org/10.1016/j.fuel.2013.09.051

VAROL, M.; SYMONDS, R.; ANTHONY, E. J.; LU, D.; JIA, L.; TAN, Y. Emissions from co-firing lignite and biomass in an oxy-fired CFBC. Fuel Processing Technology, v. 173, p. 126-133, 2018. DOI: https://doi.org/10.1016/j.fuproc.2018.01.002

VASSILEV, S. V.; BAXTER, D.; VASSILEVA, C. G. An overview of the behaviour of biomass during combustion: part ii. ash fusion and ash formation mechanisms of biomass types. Fuel, v. 117, p. 152–183, 2013. DOI: https://doi.org/10.1016/j.fuel.2013.09.024

WANDER, P. R.; BIANCHI, F. M.; CAETANO, N. R.; KLUNK, M. A.; INDRUSIAK, M. S. Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity. Energy, v. 203, p. 117882, 2020. DOI: https://doi.org/10.1016/j.energy.2020.117882

Published

2024-10-18

How to Cite

Linhares, F. de A. de, Nunes, K. G. P., Melo, P. J., & Marcilio, N. R. (2024). Evaluation of atmospheric emissions and ash generated from co-firing of mineral coal with forest residues. Ciência Florestal, 34(4), e83749. https://doi.org/10.5902/1980509883749