Glyphosate and imazapyr to eucalyptus sprout control: application to the main stem before the harvesting of the tree
DOI:
https://doi.org/10.5902/1980509840102Keywords:
Eucalyptus grandis x Eucalyptus urophylla, Sprouts eradication, Unwanted sprouts, Chemistry controlAbstract
Herbicide spraying on eucalyptus regrowth prior to planting reform is a common practice in the forest sector. However, several operations are needed in the same area for an effective sprout control. The objective of this work was to evaluate the efficiency of the herbicides glyphosate and imazapyr, applied to the main stem before the harvesting of the tree to eucalyptus sprouts control. There were set up 7 treatments, with application of doses of 3.0; 4.0; and 5.0 mL/stem of glyphosate (Gli-Up® 360g i.a L-1) and doses of 0.3; 0.5; and 0.7 mL/stem of imazapyr (Chopper Florestal® 250g i.a. L-1), in addition to a control treatment. The herbicide spraying consisted of the directed spraying of the herbicides on incisions carried out on the stem of the trees. The harvest of the trees was carried out 30 days after the herbicide spraying. Assessments about the number of sprouts per stump were carried out, the number of stump with presence of coppice, height and control efficiency of the coppice 150 days after harvesting. The glyphosate spraying promoted reduction of the sprout development and vigor. However, even with this reduction, it was observed presence of sprouts in at least 80% of the assessed stumps. The spraying of the dose of 3 mL of glyphosate promoted values next to 80% of control efficiency. Nevertheless, it was observed that new control operations would be necessary. The spraying of imazapyr was inefficient with control efficiency values less than 25%. In conclusion, the application of glyphosate to the main stem before the harvesting of the tree presents reduction in the eucalyptus sprout development. Additionally, the application of imazapyr, in the doses and form application tested, is not recommended to eucalyptus sprout control.
Downloads
References
ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, Berlin, v. 22, n. 6, p. 711-728, dec. 2013.
BAUHUS, J.; VAN DER MEER, P. J.; KANNINEN, M. Ecosystem Goods and Services from Plantation Forests. [S. l.]: Earthscan, 2010. 276 p.
BOURNE, A. E.; HAIGH, A. M.; ELLSWORTH, D. S. Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species. Tree Physiology, Oxford, v. 35, n. 3, p. 266-278, mar. 2015.
CARR, D.; JAHNKE, R.; CARR, S. Initiation, development and anatomy of lignotubers in some species of eucalyptus. Australian Journal of Botany, Melbourne, v. 32, n. 4, p. 415-437, 1984.
CLARKE, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist, Cambridge, v. 197, n. 1, p. 19-35, jan. 2013.
CORREIA, B. et al. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiologia Plantarum, Copenhagen, v. 150, n. 4, p. 580-592, abr. 2014.
DYE, P. et al. The annual pattern of sap flow in two Eucalyptus species established in the vicinity of gold-mine tailings dams in central South Africa. Southern Forests: a Journal of Forest Science, South Africa, v. 78, n. 4, p. 307-313, aug. 2016.
FERRAZ FILHO, A. C.; SCOLFORO, J. R. S.; MOLA-YUDEGO, B. The coppice-with-standards silvicultural system as applied to Eucalyptus plantations — a review. Journal of Forestry Research, [s. l.], v. 25, n. 2, p. 237-248, abr. 2014.
GONÇALVES, J. L. et al. Eucalypt plantation management in regions with water stress. Southern Forests: a Journal of Forest Science, South Africa, v. 79, n. 3; p. 169-183, may 2017.
HODECKER, B. E. R. et al. Water availability preceding long-term drought defines the tolerance of Eucalyptus to water restriction. New Forests, Dordrecht, v. 49, n. 2, p. 173-195, out. 2018.
LITTLE, K. M. Killing Eucalyptus grandis cut stumps after multiple coppice rotations in the KwaZulu-Natal midlands, South Africa. The Southern African Forestry Journal, South Africa, v. 199, n. 1, p. 7-13, 2003.
MACHADO, A. F. L. et al. Interferência de plantas daninhas na cultura do eucalipto. In: FERREIRA, L. R. et al. (org.). Manejo integrado de plantas daninhas na cultura do eucalipto. 1. ed. Viçosa, MG: Editora UFV, 2010. v. 1. p. 15-37.
MEDAUAR, C. C. et al. Espectro de gotas e distribuição de calda herbicida associada a fertilizante foliar em áreas de reforma florestal. Scientia Forestalis, Piracicaba, v. 46, n. 119, p. 333-345, set. 2018.
PAYN, T. et al. Changes in planted forests and future global implications. Forest Ecology and Management, Amsterdam, v. 352, n. 7, p. 57-67, set. 2015.
PINTO JUNIOR, O. B. et al. Transpiração pelo método da sonda de dissipação térmica em floresta de transição amazônica-cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 17, n. 3, p. 268-274, 2013.
R DEVELOPMENT CORE TEAM. R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2020.
ROBERTS, J. C.; LITTLE, K. M.; LIGHT, M. E. A comparison of the cost-effectiveness of different eucalypt cut-stump control management options to reduce competition from coppice regrowth during stand establishment in Mpumalanga, South Africa. Southern Forests: a Journal of Forest Science, South Africa, v. 80, n. 3, p. 261-268, dec. 2017.
ROBERTS, J. C.; LITTLE, K. M.; LIGHT, M. E. The use of glyphosate for the management of secondary coppice regrowth in a Eucalyptus grandis x E. urophylla coppice stand in Zululand, South Africa. Southern Forests: a Journal of Forest Science, South Africa, v. 78, n. 3, p. 217-223, may 2016.
SALGADO, T. P. et al. Effects of glyphosate on growth, yield and wood of Eucalyptus grandis. Journal of Tropical Forest Science, Kuala Lumpur, v. 29, n. 3, p. 257-266, jul. 2017.
SANTOS JUNIOR, A. et al. Glyphosate drift in eucalyptus plants. Planta Daninha, Viçosa, MG, v. 33, n. 3, p. 615–621, set. 2015.
SANTOS, S. A. et al. Carfentrazone-ethyl and glyphosate drift inhibits uredinial formation of Austropuccinia psidii on Eucalyptus grandis leaves. Pest Management Science, Sussex, v. 75, n. 1, p. 53-62, jan. 2019.
SHAO, H. B. et al. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, Paris, v. 331, n. 3, p. 215-225, jan. 2008.
SILVA, A. A.; FERREIRA, F. A.; FERREIRA, L. R. Herbicidas: Classificação e Mecanismos de Ação. In: SILVA, A. S., SILVA, A. A. Tópicos em manejo de plantas daninhas. Viçosa, MG: UFV, 2007. p. 58-117.
TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017.
TUFFI SANTOS, L. D. et al. Danos visuais e anatômicos causados pelo glyphosate em folhas de Eucalyptus grandis. Planta Daninha, Viçosa, MG, v. 26, n. 1, p. 9-16, jan. 2008.
TUFFI SANTOS, L. D. et al. Intoxicação de espécies de eucalipto submetidas à deriva do glyphosate. Planta Daninha, Viçosa, MG, v. 24, n. 2, p. 359-364, 2006.
TUFFI SANTOS, L. D. et al. Morphological responses of different eucalypt clones submitted to glyphosate drift. Environmental and Experimental Botany, Elmsford, v. 59, n. 1, p. 11-20, 2007.
VIDAL, J. M. et al. Preservação de madeiras no brasil: histórico, cenário atual e tendências. Ciência Florestal, Santa Maria, v. 25, n. 1, p. 257-271, jan. 2015.
VILLAR, E. et al. RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus. BMC Genomics, [s. l.], v. 12, n. 1, p. 1-18, nov. 2011.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ciência Florestal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.