Spatial deforestation patterns and the accuracy of deforestation mapping for the Brazilian Legal Amazon

Authors

DOI:

https://doi.org/10.5902/1980509834380

Keywords:

Deforestation mapping, Land use, Remote sensing, Web-GIS and mapping assessment

Abstract

Since 1988, the Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais - INPE) has been executing the annual inventory of forest cover loss in the Legal Amazon using satellite data under the Program for Deforestation Monitoring in the Brazilian Legal Amazon (PRODES). This survey comprises mapping more than four million squared kilometers and the produced information are employed by the Brazilian government to evaluate and establish public policies related to the control and counter deforestation. This data has been produced and published annually since 1988. However, its accuracy is not known. Therefore, this work objective is to develop a methodology to estimate the accuracy of the deforested areas mapped by PRODES for the year 2014 using stratified sampling of the deforestation patterns mapped in 50 by 50 Km cells. Mapping these patterns was accomplished by establishing and using a typology of deforestation patterns, landscape metrics and data mining techniques. Typical sample points of each deforestation pattern of were randomly drawn and analyzed visually by independent experts. This evaluation results established that the global accuracy level of the mapping under study is estimated to be 93%, with omission and commission indices estimates being 7% and 1.5%, respectively. Patterns such as fishbone, multidirectional and consolidated ones, which are considered the most complexes, present the lowest indexes of correctness, showing coherence and indicating that they should be mapped with more rigor. The presented results are consistent in a general way, indicating that the developed methodology can be applied to similar mappings.

Downloads

Download data is not yet available.

Author Biographies

Luis Eduardo Pinheiro Maurano, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP

Tecnologista Senior III 

Divisao Processamento de Imagens

Coordenadoria Geral de Observacao da Terra

Instituto Nacional de Pesquisas Espaciais

Maria Isabel Sobral Escada, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP

Tecnologista Senior III 

Divisao Processamento de Imagens

Coordenadoria Geral de Observacao da Terra

Instituto Nacional de Pesquisas Espaciais

Camilo Daleles Renno, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP

Tecnologista Senior III 

Divisao Processamento de Imagens

Coordenadoria Geral de Observacao da Terra

Instituto Nacional de Pesquisas Espaciais

References

ADAMI, M. et al. A Web Platform Development to Perform Thematic Accuracy Assessment of Sugarcane Mapping in South-Central Brazil. Remote Sensing, USA, v. 4, p. 3201-3214, 2012.

ADAMI, M. et al. A confiabilidade do PRODES: estimativa da acurácia do mapeamento do desmatamento no estado Mato Grosso. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 18, 2017, Santos. Anais... São José dos Campos: INPE, 2017, p. 4189-4196.

ALMEIDA, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. ACTA AMAZONICA, Manaus, v. 46, p. 291-302, 2016.

BECKER, B. K. Geopolítica da Amazônia. Estudos Avançados, São Paulo, v. 19, n.53, p. 71-86, 2005.

CARD, D. H. Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, USA, v. 48(3), p. 431−439, 1982.

CONGALTON, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, USA, v. 49, n. 12, p. 1671-1678, 1991.

GEIST, H. J.; LAMBIN, E. F. What Drives Tropical Deforestation? a meta-analysis of proximate and underlying causes of deforestation based on subnational case study evidence. Louvain-la-Neuve, Bélgica, ISSN: 1138-7424, 116 p., 2001.

IBGE. Mapa Integrado dos Zoneamentos Ecológico-Econômicos dos Estados da Amazônia Legal. Disponível em: http://www.ibge.gov.br/home/geociencias/geografia/mapas_doc5.shtm, 2017. Acesso em: mar. 2018.

INPE. Projeto PRODES - Projeto de Estimativa de Desflorestamento da Amazônia. Taxas anuais do Desmatamento – 1988 até 2016, 2016. Disponível em: http://www.obt.inpe.br/prodes/prodes_1988_2016n.htm. Acesso em: 15 jan. 2018.

INPE. GeoDMA Features. Disponível em: http://wiki.dpi.inpe.br/doku.php?id=geodma:features, 2017. Acesso em: 01 fev. 2018.

JENSEN, J. R. Sensoriamento Remoto do Ambiente: uma perspectiva em Recursos Terrestres. Tradução EPIPHANIO, J. C. N. et al. Parênteses, São José dos Campos, SP, 598 p., 2009.

KORTING, T.S.; FONSECA, L. M. G.; CÂMARA, G. GeoDMA - Geographic Data Mining Analyst a framework for GIScience. Computers & Geosciences, USA, v. 57, p. 133-145, 2013.

MAURANO, L. E.; ADAMI, M. Ferramentas Web-Gis para avaliar exatidão de mapeamento de uso e cobertura da terra no Cerrado brasileiro. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 18, 2017, Santos. Anais... São José dos Campos: INPE, 2017, p. 462-469.

MCGARIGAL, K.; MARKS, B. J. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. United State Department of Agriculture, Pacific Northwest Research Station General Technical Report PNW- GTR-351, Washington, 132 p., 1995.

MCROBERTS, R.E. Satellite image-based maps: Scientific inference or pretty pictures? Remote Sensing of Environment, USA, v. 115, p. 715-724, 2011.

NEPSTAD, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, New York, v. 344, p. 1118-1123, 2014.

PONTUS O. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, USA, v148, p.42-57, 2014.

QUEIROZ, G. R. et al. WTSS: um serviço web para extração de séries temporais de imagens de sensoriamento remoto. In: Simpósio Brasileiro de Sensoriamento Remoto, 17, João Pessoa. Anais. São José dos Campos: INPE, 2015. p. 7553-7560.

QUINLAN, J.R. C5.0: an informal tutorial. 2017. Disponível em:

https://www.rulequest.com/see5-unix.html. Acesso em: 26 fev. 2018.

RUDORFF, B. F. T. et al. The Soy Moratorium in the Amazon Biome Monitored by Remote Sensing Images. Remote Sensing, Basel, v. 3, p. 185-202, 2011.

SAITO, E. A. et al. Efeitos da mudança de escala em padrões de desmatamento na Amazônia. RBC- Revista Brasileira de Cartografia (Online), Brasil, v. 63, p. 401-414, 2011.

SPRACKLEN D.V.; ARNOLD S.R.; TAYLOR C.M. Observations of increased tropical rainfall preceded by air passage over forests. Nature, London, v. 489, p. 282–285, 2012.

TARDIN, A. T.; SANTOS, A. P.; NOVO, E. M. L. M. Projeto SUDAM: uso dos dados do Landsat no estudo do impacto da implantação de projetos agropecuários da Amazônia. São José dos Campos, 18 p., 1978.

TARDIN, A. T. et al. Levantamento de áreas de desmatamento na Amazônia Legal através de imagens do Satelite Landsat. São José dos Campos, 62 p., 1979.

TERRAAMAZON. TerraAmazon. 2017: Disponível em: http://terraamazon.org/index.php/pt/sobre. Acesso em: 20 abr. 2018.

VALERIANO, D. M. et al. O monitoramento do desmatamento. In: George Martine. (Org.). População e Sustentabilidade na Era das Mudanças Ambientais Globais. ABEP, Belo Horizonte, p. 223-238, 2012.

VIEIRA, IMA C. G.; ARAÚJO, R.; TOLEDO, P. M. Dinâmicas produtivas, transformações no uso da terra e sustentabilidade na Amazônia. In: Nelson Silfert; Marcus Cardoso; Walsey Magalhães; Helena Lastres. (Org.). Um Olhar Territorial para o Desenvolvimento da Amazônia. Rio de Janeiro, v., p. 370-395, 2014.

Published

2019-12-10

How to Cite

Maurano, L. E. P., Escada, M. I. S., & Renno, C. D. (2019). Spatial deforestation patterns and the accuracy of deforestation mapping for the Brazilian Legal Amazon. Ciência Florestal, 29(4), 1763–1775. https://doi.org/10.5902/1980509834380

Issue

Section

Technical Note