USE OF INDUSTRIAL WASTE TO REDUCE THE TOXICICITY OF CADMIUM AND ZINC IN CONTAMINATED SOILS

Authors

  • Marcio Osvaldo Lima Magalhães UFSM
  • Nelson Moura Brasil do Amaral Sobrinho
  • Nelson Mazur

DOI:

https://doi.org/10.5902/198050983225

Keywords:

phytoremediation, inerting agents, trees and heavy metals.

Abstract

This study aimed to evaluate the use of two types of industrial waste to reduce availability of zinc and cadmium in contaminated soil. The experiment was conducted in a greenhouse at the Universidade Federal Rural do Rio de Janeiro during 225 days, using a substrate contaminated with zinc and cadmium, collected from the yard of the Itaguaí Port Mining Industry, and near the site of disposal of hazardous waste from two industries, Cia Mercantil and Industrial Inga in Itaguaí. The substrate was treated with two inerting agents: an industrial residue with characteristic alkaline (Slag of Melt Shop) in two doses, 4% and 6%, and a high content of iron oxide as adsorbent (lamination of scale) in a single dose of 1%. After planting the seedlings of Eucalyptus urophylla, substrate was collected from each experimental unit to determine the bioavailable and unavailable fractions (extracted with MgCl2). The substrate, untreated, had a high content of cadmium and zinc in the bioavailable fraction. The treatments caused a reduction in the availability of these elements in the soil, as evidenced in the differential absorption by plants. Due to the increased availability of cadmium and zinc in the soil without the addition of inerting agents, plants did not survive the high levels of these elements, and died 30 days after implantation of the experiment. The dry matter yield was positively influenced by the application of inerting agents, showing better response at higher slag. The highest dose also gave the lowest concentrations of elements in plants without causing nutrient deficiency of zinc and cadmium, maintaining levels that are not toxic to the species of eucalyptus. Although showing lower concentrations of cadmium at 6% Melt Shop Slag, this dose resulted in greater extraction of this element by plants.

Downloads

Download data is not yet available.

References

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10007: Amostragem de resíduos. Rio de Janeiro, 2004. 21 p.

ABOUELKHAIR, K.S. et al. Effect of zinc, cadmium and lead on the growth, root characters and mineral contents of Acacia saligna, Casuarina glauca and Eucalyptus camaldulensis seedlings. Journal Agricultural Science, v. 20, p. 2501 2518, 1995.

ACCIOLY, A. M. A. Amenizantes e estratégias para estabelecimento de vegetação em solos de áreas contaminadas por metais pesados. 2001. 186 f. Tese (Doutorado em Solos e Nutrição de Plantas)–Universidade Federal de Lavras, Lavras, 2001.

ACCIOLY, A. M. A. et al. Lime amelioration of zinc and cadmium toxicities for Eucalyptus camaldulensis seedlings cultivated in contaminated soil. Revista Brasileira Ciência do Solo, v. 28, p. 775 783, 2004.

BASTA, N. T.; MCGOWEN, S. L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter contaminated soil. Environmental Pollution, v. 127, p. 73–82. 2004.

BOSE, S.; BHATTACHARYYA, A. K. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, v.10, n.7, p. 1264–1272, 2008.

BRUNNER, I. et al. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution, p. 152, 559–568, 2008.

CARNEIRO, M. A. C. et al. Behavior of herbaceous species in soil mixes with different degree of contamination with heavy metal. Pesquisa Agropecuária Brasileira, Brasília, v.37, n. 11, p. 1629 1638, nov. 2002.

CASTALDI, P. et al. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, v. 60, p.365–371, 2005.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL. Relatório Estabelecimento de Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo. São Paulo: CETESB; 2005.

CHEN, H. M. et al. Chemical methods and phytoremediation on soil contaminated with heavy metals. Chemosphere, v. 41, p. 229–234, 2000.

DELL, B.; DAPING, X. Diagnosis of zinc deficiency in seedlings of a tropical eucalypti (Eucalyptus urophylla S. T. Blake). Plant Soil, v. 176, p. 329 332, 1995.

DEROME, J. Detoxification and amelioration of heavy metal contaminated forest soils by means of liming and fertilization. Environmental Pollution, v. 107, p. 79–88, 2000.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análises de solos. 2. ed. Rio de Janeiro: EMBRAPA/CNPS, 1997, 212 p.

GARBISU, C. et al. Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Review in Environmental Health, v. 17, p. 75 90, 2002.

GICHNER, T. et al. Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicology Environmental. Safety, v. 65, p. 420–426, 2006.

GRAZZIOTTI, P. H. et al. Espécies arbóreas e ectomicorrizas em relação ao excesso de metais pesados. Tópicos em Ciência do Solo, v. 5, p. 55 105, 2003.

GUO,T. R. et al. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces B: Biointerfaces, v. 57,p. 182–188, 2007.

GUPTA A. K.; SINHA, S. Phytoextraction capacity of the plants growing on tannery sludge dumping sites, Bioresource Technology, v. 98, p. 1788–1794, 2007.

ISO 11466 International Standard: Soil quality– Extraction of trace elements soluble in aqua regia, 03–01, 1995.

JOHNSON, M. S. et al. Revegetation of metalliferous mine spoil contaminated by lead and zinc. Environmental Pollution, v. 12, p. 273 282, 1977

KABATA PENDIAS, A. ; PENDIAS, H.. Trace elements in soils and plants. Boca Raton, Florida: CRC Press, 2001. 315 p.

KAMNEV, A. A. Phytoremediation of heavy metals: an overview. Recent Advances in Marine Biotechnology, v. 8, p. 269 317. 2003.

LIMA, A. I. G. et al. Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth, Environmental and Experimental Botany, v. 55, p. 149–162, 2006.

LOMBI, E. et al. In situ fixation of metals in soil using bauxite residue: chemical assessment. Environmental Pollution, v. 118, p. 435–443, 2002.

MAGALHÃES, M. O. L. Avaliação do potencial de espécies de eucalipto na remediação de áreas contaminadas com metais pesados. 2008. 58 f. Dissertação (Mestrado em Agronomia, Ciência do Solo)-Universidade Federal Rural do Rio de Janeiro, Seropédica, 2008.

MARMIROLI, M. et al. Evidence of the involvement of plant ligno cellulosic structure in the sequestration of Pb: an X ray spectroscopy based analysis. Environmental Pollution, v. 134, p. 217 227, 2005.

MESQUITA, A. A. et al. Remediação de Solos Tratado com Lodo Rico em Zinco. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 10, n. 02, p. 738-744, 2006.

PAVLÍKOVÁ, D. et al. Glutamate kinase as a potential biomarker of heavy metal stress in plants Ecotoxicology and Environmental Safety, v. 70, p. 223 230, 2008.

PEREIRA, A.C.C. Avaliação de estratégias de remediação de áreas contaminadas por metais pesados próximas a Baía de Sepetiba – Itaguaí. 2009. 130 f. Tese (Doutorado em Agronomia, Ciência do Solo)-Universidade Federal Rural do Rio de Janeiro, Seropédica, 2009.

PYATT, F. B.. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Ecotoxicology and Environmental Safety, v. 50, p. 60 64, 2001.

SANTOS, F. S. et al. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd. Scientia Agricola. Piracicaba, v. 64, n. 5, p. 506 512, 2007.

SOARES, C. R. F. S. et al. Toxidade de zinco no crescimento e nutrição de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva. Pesquisa Agropecuária Brasileira, v. 36, p. 339-348, 2001.

SOARES, C. R. F. S. et al. Fitotoxidade de cádmio para Eucalyptus maculata e E. urophylla em solução nutritiva. Revista Árvore, Viçosa, v. 29, n. 2, p. 175 183. 2005.

SPOSITO, G. The chemistry of soils. New York: Oxford University Press, 2008. 330 p.

SU, D. C.; WONG, J. W. C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash stabilized sewage sludge, Environment International, v. 29, p. 895–900, 2004.

TEDESCO, M. J. et al. Análise de solo, plantas e outros materiais. 2. ed. Porto Alegre, Universidade Federal do Rio Grande do Sul, 1995. 174 p. (Boletim Técnico, n° 5).

WANG, L. et al. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, v. 54, p. 818–825, 2008.

YANG, X. et al. Molecular mechanisms of heavy metal hyperaccumulation and hytoremediation. Journal of Trace Elements in Medicine and Biology, v. 18, n. 339 353, 2005.

Published

2011-06-30

How to Cite

Magalhães, M. O. L., Amaral Sobrinho, N. M. B. do, & Mazur, N. (2011). USE OF INDUSTRIAL WASTE TO REDUCE THE TOXICICITY OF CADMIUM AND ZINC IN CONTAMINATED SOILS. Ciência Florestal, 21(2), 219–227. https://doi.org/10.5902/198050983225

Issue

Section

Articles

Most read articles by the same author(s)