Dendroclimatology in the Amazon basin: applications and potentialities

Authors

DOI:

https://doi.org/10.5902/1980509831995

Keywords:

Dendrochronology, Climatic changes, Amazon basin, Growth rings

Abstract

The effects of climatic changes in the Amazon basin can be studied through dendroclimatology, from the analysis of the relations between climatic and meteorological variables and the growth of the xylem of arboreal species. The xylem constitutes a true natural file because it allows the recording of these variables in the wood, which can be very useful for understanding the potential impacts that anthropic activities may have on the climate. The objective of this article is to discuss aspects inherent to the state of the art on dendroclimatic methods and their application in the tropical forests of the Amazon region for analysis of the formation of growth rings in woody plants. The review on the subject was carried out in several bibliographic bases, both classic and more recent, and it was found that, although it is an ancient science, there are still few dendroclimatic studies conducted in the Amazon basin. Forests are sensitive ecosystems and studies related to the effects they may suffer from climate change are relevant to socioeconomic planning and the development of public policies.

Downloads

Download data is not yet available.

Author Biographies

José Guilherme Roquette, Universidade Federal de Mato Grosso, Cuiabá, MT

Graduação em Engenharia Florestal pela Universidade Florestal de Mato Grosso (UFMT) e Mestre em Ciências Florestais e Ambientais pela UFMT. Doutorando em Física Ambiental na UFMT. Exerce o cargo de Analista/Engenheiro Florestal no Ministério Público do Estado de Mato Grosso.

Francisco de Almeida Lobo, Universidade Federal de Mato Grosso, Cuiabá, MT

Professor Associado IV, Doutor em Fisiologia Vegetal, Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso.

Leone Francisco Amorim Curado, Universidade Federal de Mato Grosso, Cuiabá, MT

Professor Adjunto, Doutor em Física Ambiental, Programa de Pós-graduação em Física Ambeintal, Universidade Federal de Mato Grosso.

References

ALMEIDA, C. T. et al. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology, Reading, v. 37, n. 4, p. 2013–2026, 2017.

BENISTON, M. Climate modeling at various spatial and temporal scales: where can dendrochronology help? Dendrochronologia, Verona, v. 20, n. 1–2, p. 117–131, 2002.

BONINSEGNA, J. A. et al. Dendroclimatological reconstructions in South America: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, Amsterdam, v. 281, n. 3–4, p. 210–228, 2009.

BRÄKER, O. U. Measuring and data processing in tree-ring research – a methodological introduction. Dendrochronologia, Verona, v. 20, n. 1–2, p. 203–216, 2002.

BRIFFA, K. R. Interpreting high–resolution proxy climate data: the example of dendroclimatology. In: VON STORCH, H.; NAVARRA, A. (Eds.). Analysis of Climate Variability, Applications of Statistical Techniques. Springer, Heidelberg, p. 77–94, 1995.

BRIENEN, R. J. W. et al. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proceedings of the National Academy of Sciences, Washington, v. 109, n. 42, p. 16957–16962, 2012.

BRIENEN, R. J. W.; ZUIDEMA, P. A. Relating tree growth to rainfall in Bolivian rain forests : a test for six species using tree ring analysis. Oecologia, New York, v. 146, p. 1–12, 2005.

BRIENEN, R. J. W.; ZUIDEMA, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. Journal of Ecology, London, v. 94, n. 2, p. 481–493, 2006.

COOK, E. R.; PETERS, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-ring Bulletin, Tucson, v. 41, p. 45-53, 1981.

DOWNES, G. M.; WIMMER, R.; EVANS, R. Understanding wood formation: gains to commercial forestry through tree-ring research. Dendrochronologia, Verona, v. 20, p. 37–51, 2002.

DÜNISCH, O.; MONTÓIA, V. R.; BAUCH, J. Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L . (Meliaceae ) in the central Amazon. Trees – Structure and Function, Berlin, v. 17, p. 244–250, 2003.

FERRERO, M. E.; VILLALBA, R.; RIVERA, S. M. An assessment of growth ring identification in subtropical forests from northwestern Argentina. Dendrochronologia, Verona, v. 32, n. 2, p. 113–119, 2014.

FICHTLER, E.; WORBES, M. Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA Journal, Leiden, v. 33, n. 2, p. 119–140, 2012.

FONSECA JÚNIOR, S. F.; PIEDADE, M. T. F.; SCHÖNGART, J. Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees - Structure and Function, Berlin, v. 23, n. 1, p. 127–134, 2009.

FRITTS, H. C.; SWETNAM, T. W. Dendroecology: a tool for evaluating variations in past and present forest environments. Advances in Ecological Research, Amsterdam, v. 19, p. 111–188, 1989.

FRITTS, H. C. Dendroclimatology and dendroecology. Quaternary Research, Cambridge, v. 1, n. 4, p. 419–449, 1971.

FRITTS, H. C.; LOFGREN, G. R.; GORDON, G. A. Variations in climate since 1602 as reconstructed from tree rings. Quaternary Research, Cambridge, v. 12, n. 1, p. 18–46, 1979.

GARTNER, B. L. et al. Clues for dendrochronology from studies of wood structure and function. Dendrochronologia, Verona, v. 20, n. 1–2, p. 53–61, 2002.

HUGHES, M. K. Dendrochronology in climatology – the state of the art. Dendrochronologia, Verona, v. 20, n. 1–2, p. 95–116, 2002.

IBGE. Instituto Brasileiro de Geografia e Estatística. Mapa de Biomas do Brasil. 2004. Disponível em: http://www.ibge.gov.br/home/presidencia/noticias/21052004biomashtml.shtm. Acesso em: 24 jan 2017.

LOPES, N. F.; LIMA, M. G. S. Fisiologia da produção. Viçosa-MG: Ed. UFV, 2015, 492p.

LOPEZ, L.; VILLALBA, R. An assessment of Schinopsis brasiliensis Engler (Anacardiacea) for dendroclimatological applications in the tropical Cerrado and Chaco forests, Bolivia. Dendrochronologia, Verona, v. 40, p. 85–92, 2016.

LOPEZ, L.; VILLALBA, R.; BRAVO, F. Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. Forest Ecology and Management, Amsterdam, v. 292, 2013.

MARTINELLI, N. Climate from dendrochronology: Latest developments and results. Global and Planetary Change, Amsterdam, v. 40, n. 1–2, p. 129–139, 2004.

MENDIVELSO, H. A. et al. Agricultural and Forest Meteorology Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest : Short-term tolerance vs long-term sensitivity. Agricultural and Forest Meteorology, Amsterdam, v. 188, p. 13–23, 2014.

NEUKOM, R.; GERGIS, J. Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene, v. 22, n. 5, p. 501–524, 2011.

PAREDES-VILLANUEVA, K. et al. Rainfall and temperature variability in Bolivia derived from the tree-ring width of Amburana cearensis (Fr. Allem.) A.C. Smith. Dendrochronologia, Verona, v. 35, 2015.

PETERS, R. L. et al. Detecting long-term growth trends using tree rings : a critical evaluation of methods. Global Change Biology, Urbana, v. 21, p. 2040–2054, 2015.

SOARES, L. C. Limites meridionais e orientais da área de ocorrência da floresta amazônica em território brasileiro. Revista Brasileira de Geografia, Rio de Janeiro, n. 1, 1953.

SCHÖNGART, J. et al. Phenology and stem ¬ growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology, Cambridge, v. 18, p. 581-597, 2002.

SCHÖNGART, J. et al. Teleconnection between tree growth in the Amazonian floodplains and the El Niño – Southern Oscillation effect. Global Change Biology, Urbana, v. 10, p. 683–692, 2004.

SCHÖNGART, J. et al. Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae ) in Amazonian black-water and white-water floodplain forests. Oecologia, New York, v. 145, p. 454–461, 2005.

SCHÖNGART, J.; JUNK, W. J. Forecasting the flood-pulse in Central Amazonia by ENSO-indices. Journal of Hydrology, Amsterdam, v. 335, n. 1–2, p. 124–132, 2007.

SHEPPARD, P. R. Dendroclimatology: extracting climate from trees. WIREs Climate Change, v. 1, n. 3, p. 343–352, 2010.

SOLIZ-GAMBOA, C. C. et al. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees - Structure and Function, Berlin, v. 25, n. 1, p. 17–27, 2011.

TARELKIN, Y. et al. Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA Journal, Leiden, v. 37, n. 2, p. 275–294, 2016.

VLAM, M. et al. Understanding recruitment failure in tropical tree species : insights from a tree-ring study. Forest Ecology and Management, Amsterdam, v. 312, p. 108–116, 2014.

WILES, G. C.; CALKIN, P. E.; JACOBY, G. C. Tree-ring analysis and Quaternary geology: Principles and recent applications. Geomorphology, Amsterdam, v. 16, n. 3, p. 259–272, 1996.

WIMMER, R. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia, Verona, v. 20, n. 1, p. 21–36, 2002.

ZUIDEMA, P. A. et al. Tropical forests and global change: filling knowledge gaps. Trends in Plant Science, Amsterdam, v. 18, n. 8, 2013.

Published

2019-04-04

How to Cite

Roquette, J. G., Lobo, F. de A., & Curado, L. F. A. (2019). Dendroclimatology in the Amazon basin: applications and potentialities. Ciência Florestal, 29(1), 451–462. https://doi.org/10.5902/1980509831995

Issue

Section

Review Article