Biosaline production of seedlings of native species from the Caatinga dry forest

Authors

DOI:

https://doi.org/10.5902/1980509831221

Keywords:

Brackish water, Seedling production, Irrigation, Nursery

Abstract

The Caatinga dry forest species are well adapted and resilient to the climatic conditions of the Brazilian semiarid region. However, this is one of the more vulnerable ecosystems to climate change, due to increasing deforestation and drought in the last years.Water shortage in this region has prompted studies into the possibility of safe brackish water use/reuse for forage and forest seedling production. We tested, in this study, alternative sources to potable water to irrigate forest seedlings in nurseries, which have high water expenditure. The trail was performed in a completely randomized design with three irrigation water sources and four replications with five seedlings. Biosaline fish cropping water; brackish groundwater and tap water were used for irrigation of seedlings of Anadenanthera colubrina, Erythrina velutina and Aspidosperma pyrifolium, grown in a screened nursery greenhouse in polyethylene bags filled with sand and soil (1:1 v/v). Seed germination and seedlings growth were evaluated for up to 80 days. Results showed that irrigation with biosaline fish farming waste water with electrical conductivity values > 6 dS.m-1 did not compromise the seed germination nor the seedlings growth in nursery. Brackish ground water, however, slowed the development of seedlings. Faced with the possibility of water shortages due to climate change, the use of non-potable sources of water, can therefore, be an alternative and low input technique for the production of seedlings of native species from Caatinga.

Downloads

Download data is not yet available.

Author Biographies

Bárbara França Dantas, Embrapa Semiárido, Petrolina, PE

Nucleo Temático de Recursos Naturais

Laboratório de Análise de Sementes da Embrapa Semiárido-LASESA

Renata Conduru Ribeiro, Embrapa Semiárido, Petrolina, PE

Laboratório de Análise de Sementes da Embrapa Semiárido-LASESA

Gilmara Moreira de Oliveira, Embrapa Semiárido, Feira de Santana, BA

Setor de Mudanças Climáticas

Fabrício Francisco Santos da Silva, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE

Dep. Ciências Agrárias

Gherman Garcia Leal de Araújo, Embrapa Semiárido, Petrolina, PE

Núcleo Temático de Agricultura de Sequeiro

References

AGRA, M. F. et al. Sinopse da Flora Medicinal do Cariri Paraibano. Oecologia Brasiliensis, Rio de Janeiro, v. 11, n. 3, p. 323–330, 2007.

ALMEIDA, J. P. N. et al. Production of Piptadenia stipulacea (Benth.) Ducke seedlings irrigated with fish farming wastewater. Revista Brasileira de Engenharia Agricola e Ambiental, Campina Grande, v. 21, n. 6, p. 386–391, 2017.

BELTRAN, J. M. Irrigation with saline water: benefits and environmental impact. Agricultural Water Management, Copenhaguen, v. 40, p. 183–194, 1999.

BRASIL. Regras para análise de sementes. Brasília: Mapa/ACS, 2009. 395 p.

CAMPECHE, D. F. B. et al. Tilapia production and feeding management in the semi-arid of Brazil: a view of some recent developed techniques. In: WAKEFIELD, R. (Org.). Tilapia: biology, management practices and human consumption. Documentos ed. Petrolina: Embrapa Semiárido, 2014. p. 89–101.

CHAVES, M. M.; FLEXAS, J.; PINHEIRO, C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, Exeter, v. 103, n. 4, p. 551–60, fev. 2009.

CORTINA, J. et al. The restoration of vegetation cover in the semi-arid Iberian southeast. Journal of Arid Environments, Trelew, v. 75, n. 12, p. 1377–1384, 1 dez. 2011.

DANTAS, B. F. et al. Germinative metabolism of Caatinga forest species in biosaline agriculture. Journal of Seed Science, Londrina, v. 36, n. 2, p. 194–203, 2014.

FLORES, J.; PÉREZ-SÁNCHEZ, R.M.; JURADO, E. The combined effect of water stress and temperature on seed germination of Chihuahuan Desert species. Journal of Arid Environments, Trelew, v. 146, p. 95–98, 1 nov. 2017.

GUTIÉRREZ, A. P. A. et al. Drought preparedness in Brazil. Weather and Climate Extremes, Sydney, v. 3, p. 95–106, 2014.

HAASE, D. L. Understanding forest seedling quality: measurements and interpretation. Tree Planters’ Notes, Washington, v. 52, n. 2, p. 24–30, 2008.

HAMILTON, A. J. et al. Wastewater Irrigation: The State of Play. Vadose Zone Journal, McLean, v. 6, n. 4, p. 823–840, nov. 2007.

HOLANDA, S. J. R. et al. Impacto da salinidade no desenvolvimento e crescimento de mudas de carnaúba (Copernicia prunifera (Miller) H. E. Moore). Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 15, n. 1, p. 47–52, 2011.

IPCC. Climate Change 2013: The physical science basis. Working Group I Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Cambridge, UK: Cambridge University Press, 2013.

JAMIL, A.et al. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, Apopka, v. 30, n. 5, p. 435-458. 2011.

JANZEN, D. H. Tropical dry forests the most endangered major tropical ecosystem. In: WILSON, E. O.; PETER, F. M. (Eds.) Biodiversity. Washington : National Academies Press, 1988. p 130–137.

MAGUIRE, J. D. Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Science, Washington, v. 2, p. 176–177, 1962.

MARENGO, J. A. O futuro clima do Brasil. Revista USP, São Paulo, n. 103, p. 25, 2014.

MASTERS, D. G.; BENES, S. E.; NORMAN, H. C. Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems and Environment, Budapest, v. 119, n. 3–4, p. 234–248, 2007.

MEDEIROS, D. C.; MARIA, C.; FAÇANHA, L. Qualidade de mudas de tomate em função do substrato e irrigação com efluente de piscicultura. Revista Brasileira de Agroecologia, Belém, v. 8, n. 2, p. 170–175, 2013.

MILES L. et al. A global overview of the conservation status of tropical dry forests. Journal of Biogeography, Zurich v. 33, n.2, p.491–505, 2006.

MORENO, G. M.B. et al. Meat quality of lambs fed different saltbush hay (Atriplex nummularia) levels. Italian Journal of Animal Science, Viterbo, v. 14, n. 2, p. 251–256, jan. 2015.

MUNNS, R.; TESTER, M. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, Davis, v. 59, n. 1, p. 651–681, jun. 2008.

NEGRÃO, S.; SCHMÖCKEL, S. M.; TESTER, M. Evaluating physiological responses of plants to salinity stress. Annals of Botany, Exeter, v. 119, n. 1, p. 1–11, 2017.

NIU, G.; CABRERA, R. I. Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience, Alexandria, v. 45, n. 11, p. 1605–1609, 2010.

PORTO, E. R. et al. Rendimento da Atriplex nummularia irrigada com efluentes da criação de tilápia em rejeito da dessalinização de água. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 10, n. 1, p. 97–103, 2006.

PORTO, E. R. et al. Sistema de produção integrado usando efluentes da dessalinização. Documentos ed. Petrolina: Embrapa Semiárido, 2004. 22 p.

RAJENDRAN, K. TESTER, M.; ROY, S. J. Quantifying the three main components of salinity tolerance in cereals. Plant, Cell & Environment, Medford, v. 32, n. 3, p. 237–249, 2009.

REIS, R. C. R.; DANTAS, B. F.; PELACANI, C. R. Mobilization of reserves and germination of seeds of Erythrina velutina Willd. (Leguminosae - Papilionoideae) under different osmotic potentials. Revista Brasileira de Sementes, Londrina, v. 34, n. 4, p. 580–588, 2012.

RENGASAMY, P. World salinization with emphasis on Australia. Journal of Experimental Botany, Oxford, v. 57, n. 5, p. 1017–1023, 2006.

RIBEIRO, R.C. et al. Germinação de sementes e produção de mudas de catingueira-verdadeira em água biossalina. Informativo ABRATES, Londrina, v. 24, n. 3, p. 50–54, 2014.

RIBEIRO-FILHO, A. A.; FUNCH, L.S.; RODAL, M. J. N.. Composição florísitica da floresta ciliar do rio Mandassaia, Parque Nacional da Chapada Diamantina, Bahia, Brasil. Rodriguésia, Rio de Janeiro, n. 2, p. 265–276, 2009.

SALAZAR, L. F.; NOBRE, C. A.; OYAMA, M.D. Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters, Washington, v. 34, n. 9, p. L09708, 2007.

SANTOS, S. A. et al. Aspectos da variabilidade sazonal da radiação, fluxos de energia e CO2 em área de Caatinga. Revista Brasileira de Geografia Física, Recife, v. 5, n. 4, p. 761–773, 2012.

SHRIVASTAVA, P.; KUMAR, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, Riyadh,v. 22, n. 2, p. 123-131, 2015.

SILVA, F. A. S.; AZEVEDO, C. A. V. The Assistat software version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, Cape Town, v. 11, n. 39, p. 3733–40, 2016.

SILVA, M. B. R. et al. Estresse salino em plantas da espécie florestal sabiá. Caminhos de Geografia, Uberlândia, v. 10, n. 30, 4 set. 2009.

SOUSA, R. B. C. et al. Seasonal variation of the groundwater for irrigation in Tibau microregion, Rio Grande do Norte State. Caatinga, Mossoró, v. 22, n. 4, p. 206–213, 2009.

SUDENE. Plano de aproveitamento integrado dos recursos hídricos do Nordeste do Brasil - fase I: recursos hídricos I águas subterrâneas. v. 7 ed. Recife: Departamento de Recursos Naturais, 1980.

TEDESCO, M. J. Análises de solo, plantas e outros materiais. 2. ed. Porto Alegre: Departamento de solos da UFRGS, 1995. 174 p.

TODERICH, K et al. Utilization of agriculture residues and livestock waste in Uzbekistan. Kier Discussion Paper Series, Kyoto, v. 651, 2008.

ZOMER, R. J. et al. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment, Budapest, v. 126, p. 67–80, 2008.

Downloads

Published

2019-12-10

How to Cite

Dantas, B. F., Ribeiro, R. C., Oliveira, G. M. de, Silva, F. F. S. da, & Araújo, G. G. L. de. (2019). Biosaline production of seedlings of native species from the Caatinga dry forest. Ciência Florestal, 29(4), 1551–1567. https://doi.org/10.5902/1980509831221

Issue

Section

Articles