PERFORMANCE OF Peltophorum dubium (Sprengel) Taubert, Parapiptadenia rigida (Bentham) Brenan and Enterolobium contortisiliquum (Vell.) Morong CULTIVATED IN COPPER CONTAMINATED SOIL
DOI:
https://doi.org/10.5902/198050982752Keywords:
revegetation, woody native plants, tolerance.Abstract
Soils contaminated by copper may interfere with the physiological development and establishment of plants. An alternative for the revegetation of these soils is the use of native species tolerant to copper. This study aimed to evaluate the tolerance of three native forest species to excess copper in the soil. The species used were: angico - Peltophorum dubium, canafistula - P. rigida and timbauva - Enterolobium contortisiliquum. The experiment was completely randomized in a 3 x 5 schedule, with three tree species and five doses of copper (0, 64, 128, 192 and 256 mg kg-1 soil) with six replicates. Plant height, shoot dry weight, length and specific root surface area and copper content in shoots and roots were determined. Canafistula and timbauva species showed storage of copper in roots and low translocation to the shoot. The shoot dry weight of timbauva and canafistula increased with small doses of copper while the shoot dry mass of angico was not affected by the doses tested. The timbauva and angico showed greater capacity for tolerance to copper contamination in the soil than did canafistula.Downloads
References
ACCIOLY, A. M. A.; SIQUEIRA, J. O. Contaminação química e biorremediação do solo. In: NOVAES, R. F.; ALVAREZ, V. H. V.; SCHAEFER, C. E. G. R. Tópicos em Ciência do Solo. Viçosa: SBCS, 2000. p. 299-352.
ALVES, E. et al. Avaliações fisiológicas e bioquímicas de plantas de aguapé (Eichhornia crassipes) cultivadas com níveis excessivos de nutrientes. Planta daninha, Viçosa, v. 21, p. 27-35. 2003, nesp.
ANTOSIEWICZ, D. M. Adaptation of plants to an environment polluted with heavy metals. Acta Societatis Botanicorum Poloniae, Warszawa, v. 61, n. 2, p. 281-299. 1992.
BAKER, A. J. M. Accumulators and excluders – strategies in the response of plants to heavy metals. Journal Plant Nutrition, New York, v. 3, n. 1/4, p. 643-654, 1981.
CHANDHMY, T. M. et al. Phytoremediation – focusing on accumulator plants that remediate metal contaminated soils. Australian Journal of Toxicology, Adelaide, v. 4, n. 1, p. 37-51, Jan. 1998.
CHEN, Y. X. et al. Effect of cooper-tolerant rhizosfhere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environment International, Ottawa, v. 3, n. 6, p. 861-866. 2005.
COUTINHO, H. D.; BARBOSA, AL. R. Fitorremediação: Considerações Gerais e Características de Utilização. Silva Lusitana, Lisboa, v. 15, n. 1, p. 103 – 117. 2007.
DE VOS, C. H. R.; VONK, M. J.; SCHAT, H. Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiology, Bethesda, v. 98, n. 3, p. 853-858, Mar. 1992.
EMBRAPA. Sistema Brasileiro de Classificação de Solos. Rio de Janeiro: EMBRAPA, 2006. 412 p.
EMBRAPA. Manual de Métodos de Análise de Solo. Rio de Janeiro: EMBRAPA, 2. ed., 1997. 212p.
FERREIRA, D. F. Sistemas de análise estatística para dados balanceados. Lavras: UFLA/DEX/SISVAR, 2006. 145 p.
HALL, J. L. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, v. 53, n. 366, p. 1-11, Jan. 2002.
HEALE, E. L.; ORMROD, D. P. Effects of nickel and copper on Acer rubrum, Cornus stolonifera, Lonicera tatarica and Pinus resinosa. Canadian Journal of Botany, v. 60, p. 2674-2681. 1982.
KABATA-PENDIAS, A.; MUKHERJEE, A. B. Trace elements from soil to human. New York: Springer, 2007. 450 p.
KAHLE, H. Response of roots of trees to heavy metals. Environmental and Experimental Botany, Great Britain, v. 33, n. 1, p. 99–119. 1993.
KHAN, A. G. et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, Ottawa, v. 41, n. 1-2, p.197-207, 2000.
LANDIS, T. D. Containers and Growing Media. In: LANDIS, T. D. et al. The container tree nursery manual. 1990. Disponível em: (http://www.rngr.net/Publications/ctnm)> Acesso em: 10/04/2009.
MARQUES, T. C. L. L. S. M.; MOREIRA, F. M. S.; SIQUEIRA, J. O. Crescimento e teores de metais em mudas de espécies arbóreas tropicais em solo contaminado com metais pesados. Pesquisa Agropecuária Brasileira, Brasília, v. 35, n. 1, p. 121-132, jan. 2000.
MARSCHNER, H. Mineral nutrition of higher plants. London: Academic Press, 1995. 889 p.
MACNAIR, M. R.; TILSTONE, G. H.; SMITH, S. E. The genetics of metal tolerance and accumulation in higher plants. In: TERRY, N.; BANUELOS, G. Phytoremediation of contaminated soil and water. Flórida: CRC Press, 2000. p. 235-250.
O´LEARY, J. W. The agricultural use of native plants on problem soil. In: YEO, A. R.; FOWERS, T. J. Monographs on Theoretical and applied genetics. Berlin: Springer-Verlag, 1994. p. 127-143.
OUZOUNIDOU, G.; MOUSTAKAS, M.; STRASSER, R. J. Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photo acoustic signals. Australian Journal of Plant Physiology, v. 24, n. 1, p. 81-90. 1997.
PRALON, A. Z.; MARTINS, M. A. Utilização do resíduo industrial Ferkal na produção de mudas de Mimosa caelsalpinifolia, em estéril de extração de argila, inoculadas com fungos micorrízicos arbusculares e rizóbio. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, n. 1, p. 55-63. 2001.
PATSIKKA, E. et al. Excess cooper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physioloy, v. 129, p. 1359-1367, 2002.
ROMEIRO, S. et al. Absorção de Chumbo e Potencial de Fitorremediação de Canavalia ensiformes L. Bragantia, Campinas, v. 66, n. 2, p. 327-334, 2007.
SALT, D. E. et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, Rockville, v. 109, p. 1427-1433. 1995.
SALISBURY, F. B.; ROSS, C. W. Plant physiology. Califórnia: Wadsworth Publishing Company, 1992. 682 p.
SANTOS, H. P. et al. Comportamento fisiológico de plantas de aveia (Avena strigosa) em solos com excesso de cobre. Bento Gonçalves: EMBRAPA Uva e vinho, 2004. 10 p. (Comunicado Técnico n. 49).
SILVA, R. F. Tolerância de espécies florestais arbóreas e fungos ectomicorrízicos ao cobre. 2007. 134 f. Tese (Doutorado em Ciência do Solo)–Universidade Federal de Santa Maria, Santa Maria, 2007.
SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília: EMBRAPA, 1999. 370 p.
SOARES, C. R. F. S. Toxidez de zinco, cobre, cádmio e chumbo para o eucalipto em solução nutritiva. 1999. 132 p. Dissertação (Mestrado em agronomia) - Universidade Federal de Lavras, Lavras, 1999.
SOARES, C. R. F. S. et al. Crescimento e nutrição mineral de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva com concentração crescente de cobre. Revista Brasileira de Fisiologia Vegetal, v. 12, n. 3, p. 213-225. 2000.
TAIZ, L; ZEIGER, E. Plant Physiology. São Paulo: Makron Books. 2006. 705 p.
TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. Porto Alegre: Artmed, 2009. 848 p.
TENNANT, D. A test of a modified line intersect method of estimating root length. Journal Ecology, Wisconsin, v. 63, p. 995-1001.1975.
YRUELA, I. Copper in plants. Brazilian Journal of Plant Physiology, Londrina, v. 17, n. 1, p. 145-156, jan/mar. 2005.