GAS EXCHANGE OF SEEDLINGS OF TAXI-BRANCO SUBMITTED TO LEAF TEMPERATURE VARIATION AND IRRIGATION SUSPENSION
DOI:
https://doi.org/10.5902/1980509826450Keywords:
Sclerolobium paniculatum, photosynthesis, water stress.Abstract
The study aimed to investigate the influence of leaf temperature variation associated with irrigation suspension on gas exchange of seedlings of Sclerolobium paniculatum Vogel. The study was carried out in a greenhouse at experimental area of Embrapa, Amazônia Ocidental. Plants were grown in a greenhouse and, after four months were subjected to three treatments (irrigated maintained until the field capacity, irrigation suspended for eight and 14 days). We evaluated the physiological parameters of gas exchange, net assimilation rate of CO2 (A), leaf transpiration (E), stomatal conductance (gs) and water use efficiency (WUE) which were obtained through a photosynthesis portable meter (CI-340, CID, Inc). The results showed reduction of net assimilation rate of CO2 depending on the elevation of the leaf temperature and without irrigation. After eight days without irrigation, decreased rates of photosynthetic assimilation of CO2 in 62, 65, 75, 58, 50 and 64%, and after 14 days the reduction was 80, 85, 85, 84, 86 and 93% compared to plants irrigated maintained at temperatures of 25, 30, 35, 40, 45 and 50 °C, respectively. The leaf transpiration was inversely proportional to rates of net photosynthetic assimilation of CO2, which has increased with an increased leaf temperature. The physiological behavior of gas exchange of Sclerolobium paniculatum showed variations both as regards to the effect of leaf temperature as the suspension of irrigation.
Downloads
References
ALBUQUERQUE, M. P. F. et al. Ecofisiologia de plantas jovens de mogno‐africano submetidas a deficit hídrico e reidratação. Pesquisa Agropecuária Brasileira, Brasília, v. 48, n. 1, p. 9-16, 2013.
BALDOCCHI, D. D.; AMTHOR, J. S. Canopy photosynthesis: history, measurements and models. In: ROY, J.; SAUGIER, B.; MOONEY, H. A. (Ed.). Terrestrial Global Productivity. San Diego: Academic Press, 2001. p. 9-31.
CHAVES, M. M.; COSTA, M.; SAIBO, N. J. M. Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, New York, v. 57, p. 49-104, 2011.
COSTA, E. S. et al. Photochemical efficiency in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) during recovery from high temperature stress. Brazilian Journal of Plant Physiology, Campinas, v. 14, n. 2, p. 105-110, 2002.
DIAS, L. E.; BRIENZA JUNIOR, S.; PEREIRA, C. A. Taxi-branco (Sclerolobium paniculatum Vogel): uma leguminosa arbórea nativa da Amazônia com potencial para recuperação de áreas degradadas. In: KANASHIRO, M.; PARROTA, J. A. (Ed.). Manejo e reabilitação de áreas degradadas e florestas secundárias na Amazônia. Paris: UNESCO, 1995. p. 148-153.
DIAS, D. P.; MARENCO, R. A. Fotossíntese e fotoinibição em Mogno e Acariquara em função da luminosidade e temperatura foliar. Pesquisa Agropecuária Brasileira, Brasília, v. 42, n. 3, p. 305-311, 2007.
GATES, D. Leaf temperature and transpiration. Agronomy Journal, Madison, v. 56, p. 273-277, 1964.
GONÇALVES, J. F. C.; SILVA, C. E. M.; GUIMARÃES, D. G. Fotossíntese e potencial hídrico foliar de plantas jovens de andiroba submetidas à deficiência hídrica e à reidratação. Pesquisa Agropecuária Brasileira, Brasília, v. 44, n. 1, p. 8-14, 2009.
GONÇALVES, J. F. C. et al. Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Ducke) under different light intensities. Brazilian Journal of Plant Physiology, Campinas, v. 17, p. 325- 334, 2005.
HELDT, H. W.; PIECHULLA, B. Photosynthesis implies the consumption of water. In: ______; ______. Plant Biochemistry. 4th. ed. Amsterdan: Elsevier, 2011. p. 211-239.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2007: the physical science basis-working Group I Contribution to the IPCC Fourth Assessment Report. Brussels: IPCC, 2007.
KATTGE, J.; KNORR, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment, New York, n. 30, p. 1176-1190, 2007.
LARCHER, W. Ecofisiologia Vegetal. São Carlos: RIMA, 2000.
LIBERATO, M. A. R. et al. Leaf water potential, gas exchange and chlorophyll a fl uorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery. Brazilian Journal of Plant Physiology, Campinas, v. 18, p. 315-323, 2006.
MAXWELL, K.; JOHNSON, G. N. Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany, Oxford, n. 51, p. 659-668, 2000.
MEDLYN, B. E.; LOUSTAD, D.; DELZON, S. Temperature responses of parameters of a biochemically based model of photosynthesis. I. Seaasonal changes in mature maritime pine (Pinus pinaster Ait). Plant Cell and Environment, New York, v. 25, n. 9, p. 1155-1165, 2002.
PIMENTEL, C.; BERNACCHI, C.; LONG, S. Limitations to photosynthesis at different temperatures in the leaves of Citus limon. Brazilian Journal of Plant Physiology, Campinas, v. 19, n. 2, p. 141-147, 2007.
PITMAN, J. I. Ecophysiology of tropical dry evergreen forest, Thailand: measured and modeled stomatal conductance of Hopea ferrea, a dominant canopy emergent. Journal of Applied Ecology, Oxford, v. 33, n. 6, p. 1366-1378, 1996.
PONS, T. L.; WELSCHEN, R. A. M. Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiology, Oxford, n. 23, p. 937-947, 2003
QADERI, M. M.; KUREPIN, L. V.; REID, D. M. Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environmental and Experimental Botany, Elmsford, v. 75, p. 107-113, 2012.
RIBEIRO, R. V. et al. Environmental effects on photosynthetic capacity of bean genotypes. Pesquisa Agropecuária Brasileira, Brasília, v. 39, n. 7, p. 615-623, 2004.
RIBEIRO, R. V.; MACHADO, E. C.; OLIVEIRA, R. F.. Resposta da fotossíntese à temperatura e sua interação com a intensidade luminosa em discos foliares de laranjeira doce na ausência de fotorrespiração. Ciência e Agrotecnologia, Lavras, MG, v. 30, n. 4, p. 670-678, 2006.
SAGE, R. F.; KUBIEN, D. S. The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, New York, n. 30, p. 1086-1106, 2007.
SANTOS, C. M. et al. Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Industrial Crops and Products, Amsterdan, n. 41, p. 203-213, 2013.
SIEBKE, K. et al. Elevated CO2 increases the leaf temperature of two glasshouse-grown C-4 grasses. Functional Plant Biology, Victoria, v. 29, n. 12, p. 1377-1385, 2002.
SILVA, A. R. A. et al. Trocas gasosas em plantas de girassol submetidas à deficiência hídrica em diferentes estádios fenológicos. Revista Ciência Agronômica, Fortaleza, v. 44, n. 1, p. 86-93, 2013.
SOUZA, C. R. et al. Taxi-branco (Sclerolobium paniculatum Vogel). Manaus: Embrapa Amazônia Ocidental, 2004. 23 p.
TAIZ, Z.; ZEIGER, E. Plant Physiology. Massachusetts: Sinauer Associates, 2004. 792 p.
WEIS, E.; BERRY, J. A. Plants and high temperature stress. In: LONG, S. P.; WOODWARD, F. I. (Ed.). Plants and temperature. Cambridge: Company of Biologists, 1988, p. 329-346.
WISE, R. R. et al. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell and Environment, New York, n. 27, p. 717-724, 2004.
ZANELLA, F. et al. Photosynthetic performance in jack bean [Canavalia ensiformis (L.) D.C.] under drought and after rehydration. Brazilian Journal of Plant Physiology, Campinas, v. 16, n. 3, p. 181-184, 2004.