Aspectos técnicos da produção de <i>pellets</i> de madeira

Autores

DOI:

https://doi.org/10.5902/1980509820606

Palavras-chave:

Mercado de biomassa, Biocombustíveis, Torrefação

Resumo

A evolução da política energética dos países desenvolvidos, associada à procura por fontes renováveis como a biomassa florestal, impulsionou, desde o início dos anos 2000, o crescimento da produção de pellets de madeira no mundo. O mercado de pellets tornou-se exigente em qualidade e deve lidar com a concorrência de outras fontes de energia, requerendo dos produtores um controle rigoroso de custo bem como um bom domínio técnico da produção. Dessa forma, realizou-se uma revisão bibliográfica sobre os aspectos técnicos da produção de pellets e as possibilidades e as exigências do mercado para que o Brasil possa aproveitar as oportunidades e valorizar o seu potencial florestal.

Downloads

Não há dados estatísticos.

Biografia do Autor

Laurent Roger Marie Quéno, Pesquisador Autônomo, Anápolis, GO

Diplomado do IHEDREA - Paris - França

M.Sc e Dr. pelo Departamento de Engenharia Florestal da UnB.

Trabalhos sobre Economia da Biomassa Florestal

Álvaro Nogueira de Souza, Universidade de Brasília - UnB, Brasília, DF

Prof. Dr. de Economia Florestal no departamento de Engenharia Florestal da Universidade de Brasília

Alexandre Florian da Costa, Universidade de Brasília - UnB, Brasília, DF

Prof. Dr. de Tecnologia da Madeira no departamento de Engenharia Florestal da Universidade de Brasília

Ailton Teixeira do Valle, Universidade de Brasília - UnB, Brasília, DF

Prof. Dr. de Tecnologia da Madeira no departamento de Engenharia Florestal da Universidade de Brasília

Maísa Santos Joaquim, Universidade de Brasília - UnB, Brasília, DF

Profa. Dra. do curso de Gestão de Agronegócio da Universidade de Brasília

Referências

ABT, K. L. et al. Effect of policies on pellet production and forests in the U.S. South: a technical document supporting the forest service update of the 2010 RPA Assessment. [s. l.]: USDA forest Service, 2014. 20 p.

AHN, B. J. et al. Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust. Renewable Energy, Amsterdam, v. 62, p. 18-23, 2014.

ALAKANGAS, E. European standards for solid biofuels. Fuel specification and classes, multipart standard Case – wood pellets & chips. VTT. Convenor of the CEN/TC 335 WorkingGroup2. [s. l.: s. n.], 2009.

ALAKANGAS, E. New European Pellet Standard. EN 14961-1. EUBIONET. 2010. Disponível em: <http://www.infobio.ru/sites/default/files/Alakangas_Pellet_standard_EN14961-1.pdf> Acesso em: 18 fev. 2018

ALMEIDA, L. F. P.; SOLA, A. V. H.; BEHAINNE, J. J. R. Análise físico-química do produto e processo de peletização da biomassa bagaço de cana-de-açúcar. In: CONGRESSO BRASILEIRO DE ENGENHARIA DE PRODUÇÃO, 4., 2014, Ponta Grossa. Anais... Ponta Grossa: [s. n.], 2014.

ASSOCIAÇÃO DE PRODUTORES DE FLORESTAS PLANTADAS. Anuário estatístico ABRAF 2013. Ano base 2012. ABRAF: Brasília, 2013.148 p.

ASSOCIATION POUR LES ENERGIES RENOUVELABLES. Observatoire des prix de l’énergie.Bruxelas: APERe, 2015. Disponível em: <http://www.apere.org/observatoire-des-prix>. Acesso em: 17 jul. 2017.

BAILEY, R. Another inconvenient truth: how biofuel policies are deepening poverty and accelerating climate change. Oxfam Policy Practice Climate Change Resilience, [s. l.], v. 4, n. 2, p. 1-58, 2008.

DAMEN, K.; FAAIJ, A. A life cycle inventory of existing biomass import chains for “green” electricity production. Utrecht: Copernicus Institute; Utrecht University, 2003.

DEUTMEYER, M. Refining the quality of pellets: the promise of torrefaction. In: GLOBAL Wood Pellet Industry Market And Trade Study. [s. l.]: IEA Bioenergy, 2011. 190 p.

EUROPEAN PELLET COUNCIL. Handbook for Certification of Wood Pellets for Heating Purposes. Version 2.0. [s. l.: s. n.], 2013. 46 p.

GARCIA, D.P. Caracterização química, física e térmica de pellets de madeira produzidos no Brasil. Dissertação de Mestrado em Engenharia Mecânica. Universidade Estadual Paulista, faculdade de Engenharia de Guaratinguetá, 2010. 103 p.

GARCIA, D. P. et al. Trends and challenges of brazilian pellets industry originated from agroforestry. Cerne, Lavras, v. 22, n. 3, jul./set. 2016.

GEJDOS, M. et al. Wood chips storage & energy. BioResources, Raleigh, v. 10, n. 3, p. 5544-5553, 2015.

GOH, C. S.; JUNGINGER, M. Sustainable Biomass and bioenergy in the Netherlands: Report 2013. Utrech: Copernicus Institute; Utrecht University, 2013. 87 p.

GHIASI, B. et al. Densified biocoal from woodchips: Is it better to do torrefaction before or after densification? Applied Energy, Amsterdam, v. 134, n. 1, p. 133-142, 2014.

HANSON, C. The advance of the austrian pellet boilers. Biomass Magazine, Grand Forks, 25 jun., 2014.

HEINIMÖ, J.; JUNGINGER, M. Production and trading of biomass for energy – An overview of the global status. Biomass & Bioenergy, Amsterdam, v. 33, n. 9, p. 1310-1320, 2009.

HENESSY, W. Review of wood fuel testing standards. [s. l.]: EECA; CRL Energy, 2010. 33 p. Disponível em: <http://www.eeca.govt.nz/resource/review-wood-fuel-testing-standards>. Acesso em: 29 jul. 2015.

JUNGINGER, M. et al. Developments in international bioenergy trade. Biomass & Bioenergy, Amsterdam, v. 32, p. 717-729, 2008.

KALIYAN, N.; MOREY, V. Factors affecting strength and durability of densified biomass products. Biomass & Bioenergy, Amsterdam, v. 33, p. 337-359, 2009.

KISLER, M. et al. Odour, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmospheric Environment, Amsterdam, v. 51, p. 86-93, 2012.

KRANZL, L. et al. Does bioenergy contribute to more stable energy prices? In: IAEE EUROPEAN CONFERENCE ON ENERGY, POLICIES AND TECHNOLOGIES FOR SUSTAINABLE ECONOMICS, 10. Proceedings… [s. l.: s. n.], 2009. p. 7-10.

LAMERS, P. et al. Global wood chip trade for energy. IEA Bioenergy Task 40 Sustainable International Bioenergy Trade. [s. l.: s. n.], 2012a. 20 p.

LAMERS, P. et al. Developments in international solid biofuel trade – An analysis of volumes, policies, and market factors. Renewable and Sustainable Energy Reviews, Amsterdam, v. 16, p. 3176-3199, 2012b.

LEHMANN, B. et al. Effect of Miscanthus addition and different grinding processes on the quality of wood pellets. Biomass & Bioenergy, Amsterdam, v. 44, p. 150-159, 2012.

LI, Y.; LIU, H. High-pressure densification of wood residues to form an upgraded fuel. Biomass & Bioenergy, Amsterdam, v. 19, p. 177-186, 2000.

LIU, Z. et al. Of carbonization conditions on properties of bamboo pellets. Renewable Energy, Amsterdam, v. 51, p. 1-6, 2013.

LUPP, G. et al. Impacts of increasing bioenergy use on ecosystem services on nature and society exemplified in the German district of Görlitz. Biomass & Bioenergy, Amsterdam, v. 83, p. 131-140, 2015.

MALTSOGLOU, I. et al. Combining bioenergy and food security: an approach and rapid appraisal to guide bioenergy policy formulation. Biomass & Bioenergy, Amsterdam, v. 79, p. 80-95, 2015.

MANDELL, B.; LANG, A. H. Update and Context for U.S. wood bioenergy markets. [s. l.]: Forisk Consulting, 2013. 15 p. Disponível em: <http://www.theusipa.org/Documents/NAFO-US_Bioenergy_Markets-FINAL-201306261.PDF>. Acesso em: 05 out. 2015.

MANI, S.; TABIL, L. G.; SOKHANSANJ, S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass & Bioenergy, Amsterdam, v. 30, p. 648-654, 2006.

MOBINI, M. et al. Assessing the integration of torrefaction into wood pellet production. Journal of Cleaner Production, Amsterdam, v. 78, p. 216-225, 2014.

MOISEYEV, A. et al. An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries. Journal of Forest Economics, Umeå, v. 17, p. 197-213, 2011.

NIELSEN, N. P. K.; GARDNER, D. J.; FELBY, C. Effect of extractives and storage on the pelletizing process of sawdust. Fuel, Amsterdam, v. 89, p. 94-98, 2010.

NILSSON, D.; BERNESSON, S.; HANSSON, P. Pellet production from agricultural raw materials: a systems study. Biomass & Bioenergy, Amsterdam, v. 35, p. 679-689, 2011.

OBERNBERGER, I.; THEK, G. The pellet handbook: the production and thermal utilization of pellets. London:Earth Scan, 2010. 600 p.

ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA ALIMENTAÇÃO E AGRICULTURA. Statistics Division Forestry Production and Trade. Roma: FAO, [2017]. Disponível em: <http://www.fao.org/faostat/en/#data/FO>. Acesso em: 17 jul. 2017.

PELLET ATLAS. Advancement of pellets-related European standards.Munich:WIP Renewable Energies, 2009. 26 p. Disponível em: <http://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/pelletslas_pellet_standards.pdf>. Acesso em: 11 jul. 2017.

PINEL, J. La filière pellets en France : une filière à structurer dans un contexte d’internationalisation rapide du marché. Paris: E-CUBE strategy consultants, 2013. 12 p.

PIRRAGLIA, A. et al. Fuel properties and suitability of Eucalyptus Benthamii and Eucalyptus Macarthurii for torrefied wood and pellets. BioResources, Raleigh, v. 7, n. 1, p. 217-235, 2012.

PIRRAGLIA, A. et al. Technical and economic assessment for the production of torrefiedlignocellulosic biomass pellets in the US. Energy Conversion and Management, Amsterdam, v. 66, p. 153-164, 2013.

PÖYRY. Pöyry view point, Global market, players and trade to 2020. London: Pöyry, 2010. Disponível em: <http://www.poyry.co.uk/sites/www.poyry.co.uk/files/110.pdf>. Acesso em: 29 jul. 2015.

QUÉNO, L. R. M. Produção de pellets de madeira no Brasil: estratégia, custo e risco do investimento. 2015. 152 f. Tese (Doutorado em Ciências Florestais) - Universidade de Brasília, Brasília, 2015.

RAHMAN, A. et al. Study on the potential of pelletisation of empty fruit bunch with sago as binding agent for power generation. European International Journal of Science and Technology, [s. l.], v. 2, n. 2, 2013.

RAKOS, C. Argus questions and answers: European Pellet Council. Argus Biomass Markets, Weekly Biomass Market News and Analysis, London, n. 15-002, 2015.

RESOMASS. La nouvelle logique energétique. 2013. Disponível em: <http://www.resomass.com/fr/>.Acesso em: 22 mar. 2015.

RÖDER, M.; WHITTAKER, C.; THORNLEY, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass & Bioenergy, Amsterdam, v. 79, p. 50-63, 2015.

RYCKMANS, Y. Sustainability principles as proposed by Initiative Wood Pellets Buyers. [s. l.]: Biomass and Waste Competence Centre, 2011. Disponível em: <http://www.laborelec.be/ENG/wp-content/uploads/PDF/2011-03-16-WG_Sustainability-Yves_Ryckmans.pdf>. Acesso em: 11 jul. 2017.

SERVIÇO NACIONAL DE INFORMAÇÕES FLORESTAIS. Produção florestal. Brasília: SNIF, 2015. Disponível em: <http://www.florestal.gov.br/snif/producao-florestal/producao>. Acesso em: 06 nov. 2015.

SHANG, L. et al. Quality effects caused by torrefaction of pellets made from Scots pine. Fuel Processing Technology, Amsterdam, v. 101, p. 23-28, 2012.

SKLAR, T. Torrefied wood, a bio-energy option that is ready to go”: a biomass digest special report. [s. l.: s. n.], 2009. Disponível em: <http://biomassdigest.net/blog/2009/12/31/torrefied-wood-a-bio-energy-option-that-is-ready-to-go-a-biomass-digest-special-report/>. Acesso em: 14 nov. 2015.

SOARES, V. S. et al. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore, Viçosa, MG, v. 38, n. 3, p. 543-549, 2014.

SUCHOMEL, J. et al. Fungal spores in chips. BioResources, Raleigh, v. 9, n. 3, p. 4410-4420, 2014.

TARASOV, D.; SHAHI, C.; LEITCH, M. Effect of additives on wood pellet physical and thermal characteristics: a review. International Scholarly Research Notices Forestry, London, v. 2013, ID 876939, 6 p.

THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014. 151 p.

TRØMBORG, E. et al. Economic sustainability for wood pellets production: a comparative study between Finland, Germany, Norway, Sweden and the US. Biomass & Bioenergy, Amsterdam, v. 57, p. 68-77, 2013.

WIHERSAARI, M.; AGAR, D.; KALLIO, M. Scenario analysis of fuel-pellet production: the influence of torrefaction on material flows and energy balances. Uppsala: University of Jyväskylä, 2009. Disponível em: <http://www.innovawood.com/Portals/0/documents/Margareta%20Wihersaari.pdf>. Acesso em: 04 out. 2015.

WILD, M. et al. Possible effects of torrefaction on biomass trade. [s. l.]: IEA Bioenergy Task 40, 2016. 68 p.

WOLF, A.; VIDLUND, A.; ANDERSSON, E. Energy-efficient pellet production in the forest industry - a study of obstacles and success factors. Biomass &Bioenergy, Amsterdam, v. 30, n. 1. p. 38-45, 2006.

WU, M. R.; SCHOTT, D. L.; LODEWIJKS, G. Physical properties of solid biomass. Biomass &Bioenergy, Amsterdam, v. 35, n. 5, p. 2093-2105, 2011.

ZWART, R.; BOERRIGER, H.; VAN DER DRIFT, A. The impact of biomass pre-treatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products. Energy & Fuels, Washington, v. 20, p. 2192-2197, 2006.

Downloads

Publicado

30-09-2019

Como Citar

Quéno, L. R. M., Souza, Álvaro N. de, Costa, A. F. da, Valle, A. T. do, & Joaquim, M. S. (2019). Aspectos técnicos da produção de <i>pellets</i> de madeira. Ciência Florestal, 29(3), 1478–1489. https://doi.org/10.5902/1980509820606

Edição

Seção

Artigo de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)