USO DE BIORREATORES DE IMERSÃO CONTINUA, TEMPORÁRIA E MEIO DE CULTURA SEMISSÓLIDO NA PRODUÇÃO DE CLONES DE <i>Eucalyptus camaldulensis</i>

Autores

  • Evânia Galvão Mendonça
  • Vanessa Cristina Stein
  • Humberto Henrique de Carvalho
  • Breno Régis Santos
  • Luiz Alberto Beijo
  • Luciano Vilela Paiva

DOI:

https://doi.org/10.5902/1980509825112

Palavras-chave:

meristemas, meio de cultura, enraizamento adventício

Resumo

A micropropagação em sistemas de biorreatores é considerada como uma forma de reduzir os custos de produção por meio do escalonamento de automatização do processo. O objetivo desse trabalho foi desenvolverum protocolo eficiente de produção de mudas de Eucalyptus camaldulensis em diferentes tipos de sistema, incluindo biorreator de imersão continua e temporária. Para isso, meristemas apicais (1 mm) e meristemas apicais com tecido adjacente (2,5 mm) foram usados como explantes iniciais. Esses tecidos foram cultivados, por 60 dias, em meio de cultura suplementado com 1 mg L-1 de ácido indolacético (AIA) e 0.32 mg L-1 de benzilaminopurina (BAP). Após 60 dias, os meristemas com tecidos adjacentes foram transferidos para biorreatores de imersão contínua ou temporária e mantidos no escuro ou sob condições controladas de luminosidade. Para verificar o efeito da fonte de explante na multiplicação em biorreator foram testados explantes subcultivados de meristemas multiplicados em meio de cultura semissólido e meristemas multiplicados em biorreator de imersão contínua e mantidos no escuro. Despois de estabelecer esses parâmetros, os experimentos de multiplicação foram realizados em biorreatores de imersão contínua e temporária. Os explantes multiplicados foram enraizados em meio de cultura MS suplementado com 0, 2, 4, 8 e 20 mg L-1 de ácido indolbutírico (AIB) e mantidos no escuro ou sob condições controladas de luminosidade. Depois do enraizamento as plantas foram aclimatizadas em câmara de nebulização. Os meristemas com tecidos adjacentes favoreceram um maior número de gemas/explantes. O biorreator de imersão contínua e mantido no escuro promoveu maior número de brotações e maior taxa de multiplicação e o melhor enraizamento ocorreram no meio de cultura isento de auxina, mantido no escuro por 15 dias ou o meio de cultura suplementado com auxina, mantido na luz apresentando 100% de enraizamento. A aclimatização do Eucalyptus camaldulensis foi eficiente com taxa de sobrevivência de 76%. Portanto, foi possível desenvolver um método eficiente de micropropagação em biorreator para a produção de mudas Eucalyptus camaldulensis em larga escala.

Downloads

Não há dados estatísticos.

Referências

AGGARWAL, D. et al. Factors affecting micropropagation and acclimatization of an elite clone of Eucalyptus tereticornis Sm. In Vitro Cellular & Developmental Biology - Plant, New York, v. 48, n. 5, p. 521-529, 2012.

ANDRADE, W. F.; ALMEIDA, M.; GONÇALVES, N. A. Multiplicação in vitro de Eucalyptus grandis sob estímulo com benzilaminopurina. Pesquisa Agropecuária Brasileira, Brasília, v. 41, n. 12, p. 1715-1719, 2006.

ASSIS, T. F.; FETT-NETO, A. G.; ALFENAS, A. C. Current techniques and prospects for the clonal propagation of hardwoods with emphasis on Eucalyptus. In: WALTER, C.; CARSON, M. (Ed.). Plantation Forest Biotechnology for the 21st Century. Trivandrum: Research Signpost, 2004. p. 303-333.

ASSIS, T. F.; TEIXEIRA, S. L. Enraizamento de plantas lenhosas. In: TORRES, A. C.; CALDAS, L. S.; BUSO, J. A. (Ed.) Cultura de tecidos e transformação genética de plantas. [s. l.]: EMBRAPA-SPI /EMBRAPA-CNPH,1998. p. 61-296

BANDEIRA, F. S. et al. Aclimatização ex vitro de plantas pela enxertia in vitro de clones de Eucalyptus urophylla x E grandis. Revista Árvore, Viçosa, v. 31, n. 5, p. 73-781, 2007.

BARTLETT, M. S. Properties of sufficiency and statistical tests. In: ROYAL SOCIETY OF LONDON PROCEEDINGS SERIES A, 1937. Proceedings… 1937. p. 268-282.

BENNETT, I. J.; MCCOMB, J. A. Propagation of Jarrah (Eucalyptus marginata) by organ and tissue culture. Australian Forestry, Australia, v. 12, n. 6, p. 121-127, 1982.

BERTHOULY, M.; ETIENNE, H. Temporary immersion system: a new concept for use of liquid medium in mass propagation. In: INTERNATIONAL SYMPOSIUM ON LIQUID SYSTEMS FOR IN VITRO MASS PROPAGATION OF PLANTS, 1., 2002, Norway. Proceedings… Norway: Cost 843 Working Group, 2002. p. 37-38

BESNARD, F; VERNOUX, T.; HAMANT, O. Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cellular and Molecular Life Sciences, New York, v. 68, n. 2, p. 885-906, 2011.

BINKLEY, D. et al. The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, Netherlands, v. 259, n. 9, p. 1684-1694, 2010.

BRIAN, K. M.; BASSUK, N. L. Etiolation and banding effects on adventitious root formation In: DAVIS, T.D.; HAISSIG, B.E.; SANKHLA, N. (ed). Adventitious root formation in cuttings. New York: [s. n.], 1988. v. 2, p. 30-46.

BRONDANI, G. E. et al. Micropropagation of an Eucalyptus hybrid (Eucalyptus benthamii x Eucalyptus dunnii). Acta Scientiarum. Agronomy, Maringá, v. 33, n. 4, p. 655-663, 2011.

BRONDANI, G. E. et al. Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. Journal of Forestry Research, New York, v. 23, n. 4, p. 583-592, 2012.

BUNN, E. Development of in vitro methods for ex situ conservation of Eucalyptus impensa, an endangered mallee from southwest Western Australia. Plant Cell Tissue Organ Culture, New York, v. 83, n. 1, p. 97-102, 2005.

CHENG, Z. J. et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology, Rockville, v. 161, n. 1, p. 24051, 2013.

DEBERGH, P. C.; MAENE, L. J. A scheme for the commercial propagation of ornamental plants by tissue culture. Science Horticulture, Amsterdan, v. 14, n. 4, p. 335-334, 1981.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciencia e Agrotecnologia, Lavras, v. 35, n. 6, p. 1039-1042, 2011.

GAO, R. et al. Micropropagation of Cymbidium sinense using continuous and temporary airlift bioreactor systems. Acta Physiologiae Plantarum, New York, v. 36, n. 1, p. 117-124, 2013.

GEORGE, E. F.; HALL, M. A.; DE KLERK, G. J. (Eds.) Plant Propagation by Tissue Culture. 3th ed. Dordrecht: Springer-Verlag, 2008. v. 1, 502 p.

GONÇALVES, J. et al. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. Southern Forests: a Journal of Forest Science, London, v. 70, n. 2, p. 105-118, 2008.

HU, W. J. et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnoly, Berlin, v. 17, p. 808-812, 1999.

KIM, S. J. G. N. S. M. G. et al. Use of the Temporary Immersion Bioreactor System for Mass Production of Eucalyptus pellita Plus Tree. Journal of Korean Forestry Society, South Korea, 2010.

KOMATSU, Y. H. et al. In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. Journal of Forestry Research, New York, v. 22, n. 2, p. 209-215, 2011.

LEITE, G. B.; FINARDI, N.; FORTES, G. R. L. Efeitos de concentrações de sacarose no meio de cultura e da intensidade luminosa no enraizamento in vitro do portaenxerto de pereira OH X F97. Ciência e Agrotecnology, Lavras, v. 24, n. 2, p. 353-357, 2000.

LI, S. W. et al. Mediators, genes and signaling in adventitious rooting. Botanycal Review, New York, v. 75, n. 2, p. 230-247, 2009.

LIMA, G. P. P. et al. Polyamines, Gelling Agents in Tissue Culture, Micropropagation of Medicinal Plants and Bioreactors. In: LEVA, A. (Ed.). Recent Advances in Plant in vitro Culture. [s.l: s.n., 2011]. Available from: <http://www.intechopen.com/books/recent-advances-in-plant-in-vitro-culture/polyamines-gelling-agents-in-tissue-culture-micropropagation-of-medicinal-plants-and-bioreactors>.

MANKESSI, F. et al. Histocytological characteristics of Eucalyptus urophylla × Eucalyptus grandis shoot apical meristems of different physiological ages. Trees, New York, v. 25, n. 3, p. 415-424, 2011.

MCALISTER, B. et al. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell, Tissue and Organ Culture, New York, v. 81, n. 3, p. 347-358, 2005.

MENDONÇA, E. G. et al. Growth curve and development of the internal calli structure of Eucalyptus camaldulensis Dehn. Brazilian Archives of Biology and Technology, Curitiba, v. 55, n. 6, p. 887-896, 2012.

MOTTE, H. et al. The molecular path to in vitro shoot regeneration. Biotechnology Advances, Amsterdam, v. 32, n. 1, p. 107-121, 2014.

MÜLLER, D.; LEYSER, O. Auxin, cytokinin and the control of shoot branching. Annals Botany, Oxford, v. 107, n.7, p. 1203-1212, 2011.

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plant, Amsterdam, v. 15, n. 3, p. 473-497, 1962.

OLIVEIRA, M. L. et al. Efeitos do meio de cultura e da relação BAP/ANA na multiplicação in vitro de clones de Eucalyptus grandis x E. urophylla em biorreator de imersão temporária. Revista Árvore, Viçosa, MG, v. 35, n. 6, p. 1207-1217, 2011.

OLIVEIRA, M. L. et al. Efeito do intervalo de imersão e de injeção de ar na multiplicação in vitro de Eucalyptus grandis x Eucalyptus urophylla em biorreator de imersão temporária. Ciência Florestal, Santa Maria, v. 24, n. 1, p. 37-45, 2014.

PASSOS, I. R. S. et al. Cultura in vitro de meristemas de videira: I concentrações do hormônio 6-BA em meio primário. Bragantia, Campinas, v. 44, n. 1, p. 473-479, 1985.

REIS, J. P. et al. Micropropagação de eucalipto no sistema de imersão temporária. In: CONGRESSO BRASILEIRO DE CULTURA DE TECIDOS DE PLANTAS, 2003, Lavras. Anais...Lavras: UFLA, 2003. 276 p.

SHAIKA, S. et al. Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia) frutescens. South Africa Journal of Botany, Amsterdam, v. 76, n. 2, p. 180-186, 2010.

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete sample). Biometrika, Oxford, v. 52, n. 3, p. 591-611, 1965.

SHOHAEL, A. M. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry, Amsterdam, v. 41, n. 2, p. 1179-1185, 2006.

SILVA, A. B. et al. Métodos de micropropagação de abacaxizeiro. Pesquisa Agropecuária Brasileira, Brasília, v. 42, n. 9, p. 1257-1260, 2007.

SMET, I.; BEECKMAN, T. Assymmetric cell division in land plants and algae: the driving force for differentiation. Nature Reviews Molecular Cell Biology, Berlin, v. 12, n. 3, p. 177-188, 2011.

SOUZA, A. V.; PEREIRA, M. A. S. Enraizamento de plantas cultivadas in vitro. Revista Brasileira de Plantas Medicinais, Paulínia, v. 9, n. 4, p. 103-117, 2007.

STAPE, J.; BINKLEY, D.; RYAN, M. G. Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management, Amsterdam, v. 193, n. 1, p. 17-31, 2004.

TAKAYAMA, S.; AKITA, M. The types ofbioreactors used for shoots and embryos. Plant Cell, Tissue and Organ Culture, New York, v. 39, n. 2, p. 147-156, 1994.

TANTOS, Á. et al. Triacontanol-sipported micropropagation of woody plans. Plant Cell Reports, New York, v. 20, n. 1, p. 16-21, 2001.

TOURNIER, V. An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis, Eucalyptus urophylla). Transgenic Research, New York, v. 124, n. 2, p. 403-411, 2003.

VASCONCELOS, A. G. V. et al. Hiperidricidade: uma desordem metabólica. Ciência Rural, Santa Maria, v. 42, n. 5, p. 837-844, 2012.

XAVIER, A.; COMÉRCIO, J. Microestaquia: uma maximização da micropropagação de Eucalyptus. Revista Árvore, Viçosa, MG, v. 20, n. 1, p. 9-16, 1996.

XAVIER, A.; WENDLING, I. Miniestaquia na clonagem de Eucalyptus. Viçosa: SIF, 1998. 10 p.

WAREING, P. F.; PHILLIPS, I. D. J. Growth and differentiation in plants. 3th ed. Oxford: Pergamon, 1981. 343 p.

WATT, M. P. The status of temporary immersion system (TIS) technology for plant micropropagation. African Journal Biotechnology, Ebène, v. 11, n. 76, p. 14025-14035, 2012.

WATT, M. P. Genotypic-unspecific protocols for the commercial micropropagation of Eucalyptus grandis × nitens and E. grandis × urophylla. Turkish Journal of Agriculture and Forestry, Ankara, v. 38, n. 1, p. 125-133, 2014.

Downloads

Publicado

28-12-2016

Como Citar

Mendonça, E. G., Stein, V. C., de Carvalho, H. H., Santos, B. R., Beijo, L. A., & Paiva, L. V. (2016). USO DE BIORREATORES DE IMERSÃO CONTINUA, TEMPORÁRIA E MEIO DE CULTURA SEMISSÓLIDO NA PRODUÇÃO DE CLONES DE <i>Eucalyptus camaldulensis</i>. Ciência Florestal, 26(4), 1211–1224. https://doi.org/10.5902/1980509825112

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)