Uso inovador do óleo de coco ariri na produção sustentável e rápida de ésteres via transesterificação enzimática com etanol

Autores

DOI:

https://doi.org/10.5902/2179460X88915

Palavras-chave:

Biocatálise, Burkholderia cepacia, Ésteres

Resumo

O presente trabalho realizou pela primeira vez a caraterização e a etanolização do óleo de coco de ariri catalisada pela lipase Burkholderia cepacia. Através do Planejamento Fatorial Completo 3² e da Metodologia de Superfície de Resposta (MSR), foram avaliados os efeitos de diferentes razões molares de óleo/etanol (1:4, 1:6 e 1:9) e cargas catalíticas (2%, 5% e 10%), utilizando B. Cepacia na forma livre e imobilizada, em um tempo de reação de 4 h. A caraterização química do óleo de coco ariri mostrou a predominância de ácidos graxos saturados (78,52%), sendo o ácido láurico (C12:0) o majoritário com 31,65%. O óleo de ariri apresentou caraterísticas típicas de óleos vegetais adequados para a transesterificação enzimática. Os resultados experimentais mostraram que o melhor teor de ésteres etílicos (67,1%) foi obtido com a lipase imobilizada, com uma carga catalítica de 2% e na relação óleo/etanol de 1:4. Para as reações empregando a lipase livre, os melhores resultados (62,8%) foram obtidos com uma carga catalítica de 10% e na razão óleo/etanol de 1:6. As análises estatísticas indicaram que a carga catalítica era a variável mais significativa para as reações com a lipase livre. Em contrapartida, a relação óleo/etanol foi a variável mais significativa para as reações com a lipase imobilizada. Os resultados deste estudo estabelecem o óleo de coco ariri como um substrato inovador e promissor para aplicações em reações de transesterificação.

Downloads

Não há dados estatísticos.

Biografia do Autor

Carlos Alberto Lira Junior, Instituto Federal do Maranhão

Químico Industrial e Doutorando em Biotecnologia. Professor do Instituto Federal do Maranhão, Campus Bacabal.

Rafaely Nascimento Lima, Universidade Federal do Maranhão

Professora Adjunta no Departamento de Química, Universidade Federal do Maranhão-UFMA

Caritas de Jesus Silva Mendonça, Universidade Federal do Maranhão

Químico Industrial, Doutor em Tecnologia de Alimentos, Professor Colaborador do Mestrado Profissional em Energia e Meio Ambiente da Universidade Federal do Maranhão

Wellington da Conceição Lobato do Nascimento, Universidade Federal do Maranhão

Químico Industrial e Doutorando em Química

Adeilton Pereira Maciel, Federal University of Maranhão

Químico Industrial, Doutor em Química, Professor Titular do Departamento de Química da Universidade Federal do Maranhão

Referências

Abdulla, R., & Ravindra, P. (2013). Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass and Bioenergy, 56, 8–13. https://doi.org/10.1016/j.biombioe.2013.04.010 DOI: https://doi.org/10.1016/j.biombioe.2013.04.010

Abdullah, B. M., Yusop, R. M., Salimon, J., Yousif, E., & Salih, N. (2018). Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications. Zenodo. https://doi.org/10.5281/zenodo.1089132

Ananias Ribeiro, R., Mota Nobre Queiroz, M. das G., Alves, V. L., Rocha Bernardino de Almeida Prata, E., & Soares Barbosa, É. (2020). CHEMICAL CHARACTERIZATION OF JATROPHA OIL STORED OVER A PERIOD OF TIME AND ANALYSIS OF ITS PRESSED CAKE. Revista Unimontes Científica, 15(2), 08–14. https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/2019

Andrade, L. E., Forzza, R. C., Silva, G. Z. da, & Filardi, F. L. R. (2018). Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia, 69(4), 1513–1527. https://doi.org/10.1590/2175-7860201869402 DOI: https://doi.org/10.1590/2175-7860201869402

Andrade, T. A., Errico, M., & Christensen, K. V. (2017a). Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production. Bioresource Technology, 243, 366–374. https://doi.org/10.1016/j.biortech.2017.06.118

Andrade, T. A., Errico, M., & Christensen, K. V. (2017b). Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production. Bioresource Technology, 243, 366–374. https://doi.org/10.1016/j.biortech.2017.06.118 DOI: https://doi.org/10.1016/j.biortech.2017.06.118

Andrade, T. A., Martín, M., Errico, M., & Christensen, K. V. (2019). Biodiesel production catalyzed by liquid and immobilized enzymes: Optimization and economic analysis. Chemical Engineering Research and Design, 141, 1–14. https://doi.org/10.1016/j.cherd.2018.10.026 DOI: https://doi.org/10.1016/j.cherd.2018.10.026

Anwar, F., Kamal, G. M., Nadeem, F., & Shabir, G. (2016). Variations of quality characteristics among oils of different soybean varieties. Journal of King Saud University - Science, 28(4), 332–338. https://doi.org/10.1016/j.jksus.2015.10.001 DOI: https://doi.org/10.1016/j.jksus.2015.10.001

Arana-Peña, S., Rios, N. S., Carballares, D., Mendez-Sanchez, C., Lokha, Y., Gonçalves, L. R. B., & Fernandez-Lafuente, R. (2020). Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From Pseudomonas fluorescens Immobilized on Octyl-Agarose Beads. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00036 DOI: https://doi.org/10.3389/fbioe.2020.00036

Azam, M. M., Waris, A., & Nahar, N. M. (2010). Suitability of Some Wildly Grown Seed Oils for Use as Biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(7), 657–664. https://doi.org/10.1080/15567030802606087 DOI: https://doi.org/10.1080/15567030802606087

Baena, A., Orjuela, A., Rakshit, S. K., & Clark, J. H. (2022). Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives. Chemical Engineering and Processing - Process Intensification, 175, 108930. https://doi.org/10.1016/j.cep.2022.108930 DOI: https://doi.org/10.1016/j.cep.2022.108930

Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. Journal of Molecular Catalysis B: Enzymatic, 62(1), 9–14. https://doi.org/10.1016/j.molcatb.2009.09.018 DOI: https://doi.org/10.1016/j.molcatb.2009.09.018

Barbosa, B. S., Koolen, H. H. F., Barreto, A. C., Silva, J. D. da, Figliuolo, R., & Nunomura, S. M. (2009). Aproveitamento do Óleo das Amêndoas de Tucumã do Amazonas na Produção de Biodiesel. Acta Amazonica, 39(2), 371–376. https://doi.org/10.1590/S0044-59672009000200015 DOI: https://doi.org/10.1590/S0044-59672009000200015

Baron, A. M., Barouh, N., Barea, B., Villeneuve, P., Mitchell, D. A., & Krieger, N. (2014a). Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel, 117, 458–462. https://doi.org/10.1016/j.fuel.2013.09.065

Baron, A. M., Barouh, N., Barea, B., Villeneuve, P., Mitchell, D. A., & Krieger, N. (2014b). Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel, 117, 458–462. https://doi.org/10.1016/j.fuel.2013.09.065 DOI: https://doi.org/10.1016/j.fuel.2013.09.065

Baskar, G., Aiswarya, R., Soumiya, S., Mohanapriya, N., & Roselin Nivetha, S. (2017). Recent Advances in Heterogeneous Catalysts for Biodiesel Production. Journal of Energy and Environmental Sustainability, 4, 1–5. https://doi.org/10.47469/JEES.2017.v04.100038 DOI: https://doi.org/10.47469/JEES.2017.v04.100038

Bastos, F. C. (2020). Obtenção e fracionamento de ésteres metílicos de ácidos graxos a partir do óleo de coco ariri (Syagrus cocoides martius) [Dissertação (Programa de Pós-Graduação em Química)]. Universidade Federal do Maranhão.

Boulifi N El, Bouaid, A., Martínez, M., & Aracil, J. (2015). Biodiesel Production from Babassu Oil: A Statistical Approach. Journal of Chemical Engineering & Process Technology, 06(03). https://doi.org/10.4172/2157-7048.1000232 DOI: https://doi.org/10.4172/2157-7048.1000232

Callegari-Jacques, S. M. (2003). Bioestatística: Princípios e Aplicações (1st ed.). Artmed.

Cavalcante, K. S. B., Penha, M. N. C., Mendonça, K. K. M., Louzeiro, H. C., Vasconcelos, A. C. S., Maciel, A. P., de Souza, A. G., & Silva, F. C. (2010). Optimization of transesterification of castor oil with ethanol using a central composite rotatable design (CCRD). Fuel, 89(5), 1172–1176. https://doi.org/10.1016/j.fuel.2009.10.029 DOI: https://doi.org/10.1016/j.fuel.2009.10.029

Celestino, P. (2009). Oleaginosas da Amazônia (2nd ed.). Ministério do Desenvolvimento Agrário.

Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts, 8(6), 238. https://doi.org/10.3390/catal8060238 DOI: https://doi.org/10.3390/catal8060238

DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437. https://doi.org/10.1039/c3cs35506c DOI: https://doi.org/10.1039/c3cs35506c

Dutra, L. da S., Costa Cerqueira Pinto, M., Cipolatti, E. P., Aguieiras, E. C. G., Manoel, E. A., Greco-Duarte, J., Guimarães Freire, D. M., & Pinto, J. C. (2022). How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research. Renewable and Sustainable Energy Reviews, 153, 111765. https://doi.org/10.1016/j.rser.2021.111765 DOI: https://doi.org/10.1016/j.rser.2021.111765

Fernandes, A. M. A. P., El-Khatib, S., Cunha, I. B. S., Porcari, A. M., Eberlin, M. N., Silva, M. J., Silva, P. R., Cunha, V. S., Daroda, R. J., & Alberici, R. M. (2015). Chemical Characterization of Jatropha curcas L. Seed Oil and Its Biodiesel by Ambient Desorption/Ionization Mass Spectrometry. Energy & Fuels, 29(5), 3096–3103. https://doi.org/10.1021/ef5023785 DOI: https://doi.org/10.1021/ef5023785

Fjerbaek, L., Christensen, K. V., & Norddahl, B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering, 102(5), 1298–1315. https://doi.org/10.1002/BIT.22256 DOI: https://doi.org/10.1002/bit.22256

Gerde, J. A., Hammond, E. G., Johnson, L. A., Su, C., Wang, T., & White, P. J. (2020). Soybean Oil. In Bailey’s Industrial Oil and Fat Products (pp. 1–68). Wiley. https://doi.org/10.1002/047167849X.bio041.pub2 DOI: https://doi.org/10.1002/047167849X.bio041.pub2

Gomes‐da‐Silva, J., Filardi, F. L. R., Barbosa, M. R. V., Baumgratz, J. F. A., Bicudo, C. E. M., Cavalcanti, T. B., Coelho, M. A. N., Costa, A. F., Costa, D. P., Dalcin, E. C., Labiak, P., Lima, H. C., Lohmann, L. G., Maia, L. C., Mansano, V. F., Menezes, M., Morim, M. P., Moura, C. W. N., Lughadha, E. N. & Zuntini, A. R. (2022). Brazilian Flora 2020: Leveraging the power of a collaborative scientific network. TAXON, 71(1), 178–198. https://doi.org/10.1002/tax.12640 DOI: https://doi.org/10.1002/tax.12640

Guldhe, A., Singh, P., Ansari, F. A., Singh, B., & Bux, F. (2017). Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel, 187, 180–188. https://doi.org/10.1016/j.fuel.2016.09.053 DOI: https://doi.org/10.1016/j.fuel.2016.09.053

Gumbytė, M., Makareviciene, V., Skorupskaite, V., Sendzikiene, E., & Kondratavicius, M. (2018). Enzymatic microalgae oil transesterification with ethanol in mineral diesel fuel media. Journal of Renewable and Sustainable Energy, 10(1). https://doi.org/10.1063/1.5012939 DOI: https://doi.org/10.1063/1.5012939

Hazrat, M. A., Rasul, M. G., Khan, M. M. K., Ashwath, N., Fattah, I. M. R., Ong, H. C., & Mahlia, T. M. I. (2023). Biodiesel production from transesterification of Australian Brassica napus L. oil: optimisation and reaction kinetic model development. Environment, Development and Sustainability, 25(11), 12247–12272. https://doi.org/10.1007/s10668-022-02506-0 DOI: https://doi.org/10.1007/s10668-022-02506-0

Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6(4), 185–205. https://doi.org/10.1007/s12154-013-0102-9 DOI: https://doi.org/10.1007/s12154-013-0102-9

Institute Adolfo Lutz. (2008). Methods for Chemical and Physical Analysis of Food (4th ed.). Analytical Standards of the Institute Adolfo Lutz.

Jaeger, K.-E., & Eggert, T. (2002a). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390–397. https://doi.org/10.1016/S0958-1669(02)00341-5

Jaeger, K.-E., & Eggert, T. (2002b). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390–397. https://doi.org/10.1016/S0958-1669(02)00341-5 DOI: https://doi.org/10.1016/S0958-1669(02)00341-5

Jafarihaghighi, F., Ardjmand, M., Salar Hassani, M., Mirzajanzadeh, M., & Bahrami, H. (2020). Effect of Fatty Acid Profiles and Molecular Structures of Nine New Source of Biodiesel on Combustion and Emission. ACS Omega, 5(26), 16053–16063. https://doi.org/10.1021/acsomega.0c01526 DOI: https://doi.org/10.1021/acsomega.0c01526

Jegannathan, K. R., Abang, S., Poncelet, D., Chan, E. S., & Ravindra, P. (2008). Production of Biodiesel Using Immobilized Lipase—A Critical Review. Critical Reviews in Biotechnology, 28(4), 253–264. https://doi.org/10.1080/07388550802428392 DOI: https://doi.org/10.1080/07388550802428392

Kale, P., & Ragit, S. (2017). Optimization of Babassu (Orbignya sp) biodiesel Production from babassu oil by Taguchi Technique and Fuel Characterization. 11, 35–50.

Kalita, P., Basumatary, B., Saikia, P., Das, B., & Basumatary, S. (2022). Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus, 6, 100087. https://doi.org/10.1016/j.nexus.2022.100087 DOI: https://doi.org/10.1016/j.nexus.2022.100087

Kim, H. J., Hillmyer, M. A., & Ellison, C. J. (2021). Enhanced Polyester Degradation through Transesterification with Salicylates. Journal of the American Chemical Society, 143(38), 15784–15790. https://doi.org/10.1021/jacs.1c07229 DOI: https://doi.org/10.1021/jacs.1c07229

Koushki, M., Nahidi, M., & Cheraghali, F. (2015). Physico-chemical properties, fatty acid profile and nutrition in palm oil. Archives of Advances in Biosciences, 6(3), 117–134. https://doi.org/https://doi.org/10.22037/jps.v6i3.9772

Kumar, A., Singh, V. P., & Srivastava, A. (2022). Quality biodiesel via biotransesterification from inedible renewable sources. Journal of Cleaner Production, 379, 134653. https://doi.org/10.1016/j.jclepro.2022.134653 DOI: https://doi.org/10.1016/j.jclepro.2022.134653

Kwiecien, J., Hájek, M., & Skopal, F. (2009). The effect of the acidity of rapeseed oil on its transesterification. Bioresource Technology, 100(23), 5555–5559. https://doi.org/10.1016/j.biortech.2009.06.002 DOI: https://doi.org/10.1016/j.biortech.2009.06.002

Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002 DOI: https://doi.org/10.1016/j.biotechadv.2010.03.002

Leung, W. H., Leitao, E. M., & Verbeek, C. J. R. (2023). Copolymerization of polyethylene terephthalate and polycaprolactone using catalytic transesterification. Polymer, 284, 126297. https://doi.org/10.1016/j.polymer.2023.126297 DOI: https://doi.org/10.1016/j.polymer.2023.126297

Lin, S. W. (2011). Palm Oil. In Vegetable Oils in Food Technology (pp. 25–58). Wiley. https://doi.org/10.1002/9781444339925.ch2 DOI: https://doi.org/10.1002/9781444339925.ch2

Lisboa, M. C., Wiltshire, F. M. S., Fricks, A. T., Dariva, C., Carrière, F., Lima, Á. S., & Soares, C. M. F. (2020). Oleochemistry potential from Brazil northeastern exotic plants. Biochimie, 178, 96–104. https://doi.org/10.1016/j.biochi.2020.09.002 DOI: https://doi.org/10.1016/j.biochi.2020.09.002

Lorenzi, H., Kahn, F., Noblick, L. R., & Ferreira, E. (2010). Flora Brasileira - Arecaceae (Palmeiras) (1st ed.). Instituto Plantarum.

Lotti, M., Pleiss, J., Valero, F., & Ferrer, P. (2015). Effects of methanol on lipases: Molecular, kinetic and process issues in the production of biodiesel. Biotechnology Journal, 10(1), 22–30. https://doi.org/10.1002/biot.201400158 DOI: https://doi.org/10.1002/biot.201400158

Lotti, M., Pleiss, J., Valero, F., & Ferrer, P. (2018). Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnology Journal, 13(5). https://doi.org/10.1002/biot.201700155 DOI: https://doi.org/10.1002/biot.201700155

Lukovic, N., Kneevic-Jugovic, Z., & Bezbradic, D. (2011). Biodiesel Fuel Production by Enzymatic Transesterification of Oils: Recent Trends, Challenges and Future Perspectives. In Alternative Fuel. InTech. https://doi.org/10.5772/21905 DOI: https://doi.org/10.5772/21905

Luna, C., Luna, D., Calero, J., Bautista, F. M., Romero, A. A., Posadillo, A., & Verdugo-Escamilla, C. (2016). Biochemical catalytic production of biodiesel. In Handbook of Biofuels Production (pp. 165–199). Elsevier. https://doi.org/10.1016/B978-0-08-100455-5.00007-2 DOI: https://doi.org/10.1016/B978-0-08-100455-5.00007-2

Ma, L., Zhou, L., Jiang, Y., He, Y., Wang, L., & Gao, J. (2017). Lipase based static emulsions as efficient biocatalysts for biodiesel production. Journal of Chemical Technology & Biotechnology, 92(6), 1248–1255. https://doi.org/10.1002/jctb.5118 DOI: https://doi.org/10.1002/jctb.5118

Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E.-S. (2023). Enzyme Immobilization Technologies and Industrial Applications. ACS Omega, 8(6), 5184–5196. https://doi.org/10.1021/acsomega.2c07560 DOI: https://doi.org/10.1021/acsomega.2c07560

Mandari, V., & Devarai, S. K. (2022). Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BioEnergy Research, 15(2), 935–961. https://doi.org/10.1007/s12155-021-10333-w DOI: https://doi.org/10.1007/s12155-021-10333-w

Mansourpoor, M. (2012). Optimization of Biodiesel Production from Sunflower Oil Using Response Surface Methodology. Journal of Chemical Engineering & Process Technology, 03(05). https://doi.org/10.4172/2157-7048.1000141 DOI: https://doi.org/10.4172/2157-7048.1000141

Martinez-Guerra, E., & Gude, V. G. (2014). Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil. Fuel, 137, 100–108. https://doi.org/10.1016/j.fuel.2014.07.087 DOI: https://doi.org/10.1016/j.fuel.2014.07.087

Martinez-Silveira, A., Villarreal, R., Garmendia, G., Rufo, C., & Vero, S. (2019). Process conditions for a rapid in situ transesterification for biodiesel production from oleaginous yeasts. Electronic Journal of Biotechnology, 38, 1–9. https://doi.org/10.1016/j.ejbt.2018.11.006 DOI: https://doi.org/10.1016/j.ejbt.2018.11.006

Mata, T. M., Sousa, I. R. B. G., Vieira, S. S., & Caetano, N. S. (2012). Biodiesel Production from Corn Oil via Enzymatic Catalysis with Ethanol. Energy & Fuels, 26(5), 3034–3041. https://doi.org/10.1021/ef300319f DOI: https://doi.org/10.1021/ef300319f

McDonald, A. G., & Tipton, K. F. (2023). Enzyme nomenclature and classification: the state of the art. The FEBS Journal, 290(9), 2214–2231. https://doi.org/10.1111/febs.16274 DOI: https://doi.org/10.1111/febs.16274

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (5th ed.). John Wiley & Sons Inc.

Morales, G., Iglesias, J., & Melero, J. A. (2020). Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts. Catalysts, 10(5), 581. https://doi.org/10.3390/catal10050581 DOI: https://doi.org/10.3390/catal10050581

Moreira, A. B. R., Perez, V. H., Zanin, G. M., & de Castro, H. F. (2007). Biodiesel Synthesis by Enzymatic Transesterification of Palm Oil with Ethanol Using Lipases from Several Sources Immobilized on Silica–PVA Composite. Energy & Fuels, 21(6), 3689–3694. https://doi.org/10.1021/ef700399b DOI: https://doi.org/10.1021/ef700399b

Moreira, K. S., Moura Júnior, L. S., Monteiro, R. R. C., de Oliveira, A. L. B., Valle, C. P., Freire, T. M., Fechine, P. B. A., de Souza, M. C. M., Fernandez-Lorente, G., Guisan, J. M., & dos Santos, J. C. S. (2020a). Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts, 10(4), 414. https://doi.org/10.3390/catal10040414

Moreira, K. S., Moura Júnior, L. S., Monteiro, R. R. C., de Oliveira, A. L. B., Valle, C. P., Freire, T. M., Fechine, P. B. A., de Souza, M. C. M., Fernandez-Lorente, G., Guisan, J. M., & dos Santos, J. C. S. (2020b). Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts, 10(4), 414. https://doi.org/10.3390/catal10040414 DOI: https://doi.org/10.3390/catal10040414

Moretto, E., & Fett, R. (1989). Óleos e gorduras vegetais processamento e analises (2nd ed.). UFSC.

Morin, P., Hamad, B., Sapaly, G., Carneiro Rocha, M. G., Pries de Oliveira, P. G., Gonzalez, W. A., Andrade Sales, E., & Essayem, N. (2007). Transesterification of rapeseed oil with ethanoll. Catalysis with homogeneous Keggin heteropolyacids. Applied Catalysis A: General, 330, 69–76. https://doi.org/10.1016/j.apcata.2007.07.011 DOI: https://doi.org/10.1016/j.apcata.2007.07.011

Mukhametov, A., Mamayeva, L., Kazhymurat, A., Akhlan, T., & Yerbulekova, M. (2023). Study of vegetable oils and their blends using infrared reflectance spectroscopy and refractometry. Food Chemistry: X, 17, 100386. https://doi.org/10.1016/j.fochx.2022.100386 DOI: https://doi.org/10.1016/j.fochx.2022.100386

Mumtaz, M. W., Adnan, A., Mukhtar, H., Rashid, U., & Danish, M. (2017). Biodiesel Production Through Chemical and Biochemical Transesterification. In Clean Energy for Sustainable Development (pp. 465–485). Elsevier. https://doi.org/10.1016/B978-0-12-805423-9.00015-6 DOI: https://doi.org/10.1016/B978-0-12-805423-9.00015-6

Narwal, S. K., & Gupta, R. (2013a). Biodiesel production by transesterification using immobilized lipase. Biotechnology Letters, 35(4), 479–490. https://doi.org/10.1007/s10529-012-1116-z

Narwal, S. K., & Gupta, R. (2013b). Biodiesel production by transesterification using immobilized lipase. Biotechnology Letters, 35(4), 479–490. https://doi.org/10.1007/s10529-012-1116-z DOI: https://doi.org/10.1007/s10529-012-1116-z

Nascimento, U. M., Vasconcelos, A. C. S., Azevedo, E. B., & Silva, F. C. (2009). Otimização da produção de biodiesel a partir de óleo de coco babaçu com aquecimento por microondas. Eclética Química, 34(4), 37–48. https://doi.org/10.1590/S0100-46702009000400004 DOI: https://doi.org/10.1590/S0100-46702009000400004

Nasreen, S., Liu, H., Khan, R., Zhu, X., & Skala, D. (2015). Transesterification of soybean oil catalyzed by Sr-doped cinder. Energy Conversion and Management, 95, 272–280. https://doi.org/10.1016/j.enconman.2015.02.006 DOI: https://doi.org/10.1016/j.enconman.2015.02.006

Nelson, L. A., Foglia, T. A., & Marmer, W. N. (1996). Lipase-catalyzed production of biodiesel. Journal of the American Oil Chemists’ Society, 73(9), 1191–1195. https://doi.org/10.1007/BF02523383 DOI: https://doi.org/10.1007/BF02523383

Neto, J. F. da S., Silva Machado, J., Mendes, F., Rios, M. A. de S., Assunção, J. C. da C., Maia da Silva, F. F., Mathias Macêdo, A. A., & Volken de Souza, C. F. (2021). Aceite de coco babasú (Orbignya speciosa Mart.) extraído industrialmente y manualmente como materia prima para la producción de biodiésel. Revista ION, 34(2). https://doi.org/10.18273/revion.v34n2-2021009 DOI: https://doi.org/10.18273/revion.v34n2-2021009

Neupane, D., Bhattarai, D., Ahmed, Z., Das, B., Pandey, S., Solomon, J. K. Q., Qin, R., & Adhikari, P. (2021a). Growing Jatropha (Jatropha curcas L.) as a Potential Second-Generation Biodiesel Feedstock. Inventions, 6(4), 60. https://doi.org/10.3390/inventions6040060

Neupane, D., Bhattarai, D., Ahmed, Z., Das, B., Pandey, S., Solomon, J. K. Q., Qin, R., & Adhikari, P. (2021b). Growing Jatropha (Jatropha curcas L.) as a Potential Second-Generation Biodiesel Feedstock. Inventions, 6(4), 60. https://doi.org/10.3390/inventions6040060 DOI: https://doi.org/10.3390/inventions6040060

Ng, H. S., Kee, P. E., Yim, H. S., Chen, P.-T., Wei, Y.-H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302, 122889. https://doi.org/10.1016/j.biortech.2020.122889 DOI: https://doi.org/10.1016/j.biortech.2020.122889

Nie, J., Shen, J., Shim, Y. Y., Tse, T. J., & Reaney, M. J. T. (2020). Synthesis of Trimethylolpropane Esters by Base‐Catalyzed Transesterification. European Journal of Lipid Science and Technology, 122(3). https://doi.org/10.1002/ejlt.201900207 DOI: https://doi.org/10.1002/ejlt.201900207

Noblick, L. R. (2017). A revision of the genus Syagrus (Arecaceae). Phytotaxa, 294(1), 1. https://doi.org/10.11646/phytotaxa.294.1.1 DOI: https://doi.org/10.11646/phytotaxa.294.1.1

Norjannah, B., Ong, H. C., Masjuki, H. H., Juan, J. C., & Chong, W. T. (2016a). Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Advances, 6(65), 60034–60055. https://doi.org/10.1039/C6RA08062F

Norjannah, B., Ong, H. C., Masjuki, H. H., Juan, J. C., & Chong, W. T. (2016b). Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Advances, 6(65), 60034–60055. https://doi.org/10.1039/C6RA08062F DOI: https://doi.org/10.1039/C6RA08062F

Noureddini, H., Gao, X., & Philkana, R. S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 96(7), 769–777. https://doi.org/10.1016/j.biortech.2004.05.029 DOI: https://doi.org/10.1016/j.biortech.2004.05.029

Oliveira, E. V. A., Costa, L. C., Thomaz, D. M., Costa, M. A. S., & Maria, L. C. S. (2015). Transesterification of Soybean Oil to Biodiesel by Anionic and Cationic Ion Exchange Resins. Revista Virtual de Química, 7(6), 2314–2333. https://doi.org/10.5935/1984-6835.20150138 DOI: https://doi.org/10.5935/1984-6835.20150138

Orege, J. I., Oderinde, O., Kifle, G. A., Ibikunle, A. A., Raheem, S. A., Ejeromedoghene, O., Okeke, E. S., Olukowi, O. M., Orege, O. B., Fagbohun, E. O., Ogundipe, T. O., Avor, E. P., Ajayi, O. O., & Daramola, M. O. (2022). Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Conversion and Management, 258, 115406. https://doi.org/10.1016/j.enconman.2022.115406 DOI: https://doi.org/10.1016/j.enconman.2022.115406

Papin Sourou, M., Tchiakpe, L., Guevara, N., Théomaine, F., BOTHON, F., Sidohounde, A., Pascal, C., Agbangnan D., C. P., Bessieres, D., Chrostowska, A., Codjo, D., & Sohounhloue, K. (2018). Journal of Petroleum Technology and Alternative Fuels Fatty acid profile and quality parameters of Ceiba pentandra (L.) seed oil: A potential source of biodiesel. 14–19. https://doi.org/10.5897/JPTAF2018.0141

Pedro, K., Parreira, J., Correia, I., Henriques, C., & Langone, M. (2017a). ENZYMATIC BIODIESEL SYNTHESIS FROM ACID OIL USING A LIPASE MIXTURE. Química Nova. https://doi.org/10.21577/0100-4042.20170180

Pedro, K., Parreira, J., Correia, I., Henriques, C., & Langone, M. (2017b). ENZYMATIC BIODIESEL SYNTHESIS FROM ACID OIL USING A LIPASE MIXTURE. Química Nova. https://doi.org/10.21577/0100-4042.20170180 DOI: https://doi.org/10.21577/0100-4042.20170180

Pellicano, M., Cammarota, G., Graziani, M., & Aparicio, R. (2008). THE SCIENTIFIC HANDBOOK. Mapping And Comparing Oils. “Sixth Framework Programme of the European Community” - Priority 5. Pag. 199-244, Sensory properties and consumers acceptability of oils.

Pinheiro, C. U. B., Balick, M. J., & Frazao, J. M. F. (1996). Branching in Syagrus cocoides (Arecaceae) in Maranhao, Northeastern Brazil. Brittonia, 48(4), 556. https://doi.org/10.2307/2807876 DOI: https://doi.org/10.2307/2807876

Pinto, A. C., Guarieiro, L. L. N., Rezende, M. J. C., Ribeiro, N. M., Torres, E. A., Lopes, W. A., Pereira, P. A. de P., & Andrade, J. B. de. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16(6b), 1313–1330. https://doi.org/10.1590/S0103-50532005000800003 DOI: https://doi.org/10.1590/S0103-50532005000800003

Porto de Souza Vandenberghe, L., Karp, S. G., Binder Pagnoncelli, M. G., von Linsingen Tavares, M., Libardi Junior, N., Valladares Diestra, K., Viesser, J. A., & Soccol, C. R. (2020). Classification of enzymes and catalytic properties. In Biomass, Biofuels, Biochemicals (pp. 11–30). Elsevier. https://doi.org/10.1016/B978-0-12-819820-9.00002-8 DOI: https://doi.org/10.1016/B978-0-12-819820-9.00002-8

Raita, M., Champreda, V., & Laosiripojana, N. (2010). Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochemistry, 45(6), 829–834. https://doi.org/10.1016/j.procbio.2010.02.002 DOI: https://doi.org/10.1016/j.procbio.2010.02.002

Rajendran, N., Pandey, A., Gnansounou, E., Gurunathan, B., & Han, J. (2022). Techno-economic analysis of biodiesel production from nonedible biooil using catalytic transesterification. In Biofuels and Bioenergy (pp. 601–626). Elsevier. https://doi.org/10.1016/B978-0-323-90040-9.00003-5 DOI: https://doi.org/10.1016/B978-0-323-90040-9.00003-5

Ramakrishnan, V. V., Dave, D., Liu, Y., Routray, W., & Murphy, W. (2021). Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. Processes, 9(4), 700. https://doi.org/10.3390/pr9040700 DOI: https://doi.org/10.3390/pr9040700

Ramos, M. D. N., Milessi, T. S., Candido, R. G., Mendes, A. A., & Aguiar, A. (2022). Enzymatic catalysis as a tool in biofuels production in Brazil: Current status and perspectives. Energy for Sustainable Development, 68, 103–119. https://doi.org/10.1016/j.esd.2022.03.007 DOI: https://doi.org/10.1016/j.esd.2022.03.007

Rao, Gullapalli. B. D., Anjaneyulu, B., Kaushik, Mahabir. P., & Prasad, Mailavaram. R. (2021). β‐Ketoesters: An Overview and It’s Applications via Transesterification. ChemistrySelect, 6(40), 11060–11075. https://doi.org/10.1002/slct.202102949 DOI: https://doi.org/10.1002/slct.202102949

Remonatto, D., Miotti Jr., R. H., Monti, R., Bassan, J. C., & de Paula, A. V. (2022). Applications of immobilized lipases in enzymatic reactors: A review. Process Biochemistry, 114, 1–20. https://doi.org/10.1016/j.procbio.2022.01.004 DOI: https://doi.org/10.1016/j.procbio.2022.01.004

Rezende, M., de Lima, A. L., Silva, B., Mota, C., Torres, E., da Rocha, G., Cardozo, I., Costa, K., Guarieiro, L., Pereira, P., Martinez, S., & de Andrade, J. (2021). Biodiesel: An Overview II. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20210046 DOI: https://doi.org/10.21577/0103-5053.20210046

Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A., & Ahmad, A. (2020). State of the Art of Catalysts for Biodiesel Production. Frontiers in Energy Research, 8. https://doi.org/10.3389/fenrg.2020.00101 DOI: https://doi.org/10.3389/fenrg.2020.00101

Rosset, I. G., Tavares, M. C. H., Assaf, E. M., & Porto, A. L. M. (2011). Catalytic ethanolysis of soybean oil with immobilized lipase from Candida antarctica and 1H NMR and GC quantification of the ethyl esters (biodiesel) produced. Applied Catalysis A: General, 392(1–2), 136–142. https://doi.org/10.1016/j.apcata.2010.10.035 DOI: https://doi.org/10.1016/j.apcata.2010.10.035

Salaheldeen, M., Mariod, A. A., Aroua, M. K., Rahman, S. M. A., Soudagar, M. E. M., & Fattah, I. M. R. (2021). Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts, 11(9), 1121. https://doi.org/10.3390/catal11091121 DOI: https://doi.org/10.3390/catal11091121

Sales, A. R. R., Albuquerque, T. da N., Xavier, L. E., Santana, A. G., Silva, O. S., Costa, S. dos S., Fonseca, S. B., & Meireles, B. R. L. de A. (2020). Caracterização físico-química do oléo de coco babaçu industrial e artesanal e suas aplicações tecnológicas. Brazilian Journal of Development, 6(5), 25734–25748. https://doi.org/10.34117/bjdv6n5-140 DOI: https://doi.org/10.34117/bjdv6n5-140

Salihu, A., Alam, Md. Z., AbdulKarim, M. I., & Salleh, H. M. (2012). Lipase production: An insight in the utilization of renewable agricultural residues. Resources, Conservation and Recycling, 58, 36–44. https://doi.org/10.1016/j.resconrec.2011.10.007 DOI: https://doi.org/10.1016/j.resconrec.2011.10.007

Sánchez, D. A., Tonetto, G. M., & Ferreira, M. L. (2018). Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnology and Bioengineering, 115(1), 6–24. https://doi.org/10.1002/bit.26458 DOI: https://doi.org/10.1002/bit.26458

Sandoval, G., Casas-Godoy, L., Bonet-Ragel, K., Rodrigues, J., Ferreira-Dias, S., & Valero, F. (2017). Enzyme-Catalyzed Production of Biodiesel as Alternative to Chemical- Catalyzed Processes: Advantages and Constraints. Current Biochemical Engineering, 4(2). https://doi.org/10.2174/2212711904666170615123640 DOI: https://doi.org/10.2174/2212711904666170615123640

Santana, H. S., Tortola, D. S., Reis, É. M., Silva, J. L., & Taranto, O. P. (2016). Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor: Experimental and simulation studies. Chemical Engineering Journal, 302, 752–762. https://doi.org/10.1016/j.cej.2016.05.122 DOI: https://doi.org/10.1016/j.cej.2016.05.122

Santos, S., Puna, J., & Gomes, J. (2020). A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Energies, 13(11), 3013. https://doi.org/10.3390/en13113013 DOI: https://doi.org/10.3390/en13113013

Seber, G. A. F., & Lee, A. J. (2003). Linear Regression Analysis (2nd ed.). Wiley. DOI: https://doi.org/10.1002/9780471722199

Selmi, B., & Thomas, D. (1998). Immobilized lipase‐catalyzed ethanolysis of sunflower oil in a solvent‐free medium. Journal of the American Oil Chemists’ Society, 75(6), 691–695. https://doi.org/10.1007/s11746-998-0207-4 DOI: https://doi.org/10.1007/s11746-998-0207-4

Shah, S., & Gupta, M. N. (2007). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry, 42(3), 409–414. https://doi.org/10.1016/j.procbio.2006.09.024 DOI: https://doi.org/10.1016/j.procbio.2006.09.024

Shah, S., Sharma, S., & Gupta, M. N. (2004a). Biodiesel Preparation by Lipase-Catalyzed Transesterification of Jatropha Oil. Energy & Fuels, 18(1), 154–159. https://doi.org/10.1021/ef030075z

Shah, S., Sharma, S., & Gupta, M. N. (2004b). Biodiesel Preparation by Lipase-Catalyzed Transesterification of Jatropha Oil. Energy & Fuels, 18(1), 154–159. https://doi.org/10.1021/ef030075z DOI: https://doi.org/10.1021/ef030075z

Shahedi, M., Yousefi, M., Habibi, Z., Mohammadi, M., & As’habi, M. A. (2019). Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renewable Energy, 141, 847–857. https://doi.org/10.1016/j.renene.2019.04.042 DOI: https://doi.org/10.1016/j.renene.2019.04.042

Shi, L., Liu, Z., Li, J., & Qin, Z. (2017). Analysis of Edible Vegetable Oils by Infrared Absorption Spectrometry. Proceedings of the 2017 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017). https://doi.org/10.2991/eame-17.2017.67 DOI: https://doi.org/10.2991/eame-17.2017.67

Silva Ferreira, B., Pereira Faza, L., & Le Hyaric, M. (2012). A Comparison of the Physicochemical Properties and Fatty Acid Composition of Indaiá ( Attalea dubia ) and Babassu ( Orbignya phalerata ) Oils. The Scientific World Journal, 2012, 1–4. https://doi.org/10.1100/2012/532374 DOI: https://doi.org/10.1100/2012/532374

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds (8th ed.). Wiley.

Smith, H., & Draper, N. R. (1998). Applied Regression Analysis (3rd ed.). Wiley-Interscience. DOI: https://doi.org/10.1002/9781118625590

Soares, T. B., Coelho, S. R. M., Christ, D., Schoeninger, V., Comassetto, T. P., & Do Prado, N. V. (2024). Pressing extraction and physico-chemical characterization of seed oil and cake of Jatropha curcas L. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3487. https://doi.org/10.55905/oelv22n2-224 DOI: https://doi.org/10.55905/oelv22n2-224

Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., & Lin, L. (2019). Catalysis in biodiesel production—a review. Clean Energy, 3(1), 2–23. https://doi.org/10.1093/ce/zky020 DOI: https://doi.org/10.1093/ce/zky020

Tongboriboon, K., Cheirsilp, B., & H-Kittikun, A. (2010). Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 67(1–2), 52–59. https://doi.org/10.1016/j.molcatb.2010.07.005 DOI: https://doi.org/10.1016/j.molcatb.2010.07.005

Toscano, G., & Maldini, E. (2007). ANALYSIS OF THE PHYSICALAND CHEMICAL CHARACTERISTICS OF VEGETABLE OILS AS FUEL. Journal of Agricultural Engineering, 38(3), 39. https://doi.org/10.4081/jae.2007.3.39 DOI: https://doi.org/10.4081/jae.2007.3.39

Véras, I. C., Silva, F. A. L., Ferrão-Gonzales, A. D., & Moreau, V. H. (2011). One-step enzymatic production of fatty acid ethyl ester from high-acidity waste feedstocks in solvent-free media. Bioresource Technology, 102(20), 9653–9658. https://doi.org/10.1016/j.biortech.2011.08.012 DOI: https://doi.org/10.1016/j.biortech.2011.08.012

Yeşilyurt, M. K., Öner, İ. V., & Yılmaz, E. Ç. (2019). Biodiesel Induced Corrosion and Degradation: A Review. Pamukkale University Journal of Engineering Sciences, 25(1), 60–70. https://doi.org/10.5505/pajes.2018.01885 DOI: https://doi.org/10.5505/pajes.2018.01885

Yusop, R. (2013). Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications. International Journal of Chemical Science and Engineering, 7.

Yuzbasheva, E. Yu., Gotovtsev, P. M., Mostova, E. B., Perkovskaya, N. I., Lomonosova, M. A., Butylin, V. V., Sineokii, S. P., & Vasilov, R. G. (2014). Biodiesel production via enzymatic catalysis. Applied Biochemistry and Microbiology, 50(8), 737–749. https://doi.org/10.1134/S0003683814080067 DOI: https://doi.org/10.1134/S0003683814080067

Zhao, X., Qi, F., Yuan, C., Du, W., & Liu, D. (2015). Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, 44, 182–197. https://doi.org/10.1016/j.rser.2014.12.021 DOI: https://doi.org/10.1016/j.rser.2014.12.021

Publicado

2025-10-24

Como Citar

Lira Junior, C. A., Lima, R. N., Mendonça, C. de J. S., Nascimento, W. da C. L. do, & Maciel, A. P. (2025). Uso inovador do óleo de coco ariri na produção sustentável e rápida de ésteres via transesterificação enzimática com etanol. Ciência E Natura, 47, e88915. https://doi.org/10.5902/2179460X88915

Edição

Seção

Química

Artigos mais lidos pelo mesmo(s) autor(es)