Explorando as propriedades ADMET e potenciais mecanismos anticancerígenos de um novo organoseleneto utilizando farmacologia de rede e estudo de atividade antitumoral in vitro

Autores

DOI:

https://doi.org/10.5902/2179460X88474

Palavras-chave:

Propriedades farmacocinéticas, Cultivo celular, Alvos

Resumo

Mutações genéticas complexas e transformações malignas são muito comuns em células tumorais. Variantes modificadas de análogos de nucleosídeos têm se mostrado uma alternativa promissora na busca por novos tratamentos na terapia anticancerígena. No entanto, esses compostos às vezes apresentam dificuldades relacionadas à sua baixa biodisponibilidade e resistência do tecido tumoral a esses. Neste estudo, foram realizadas análises investigativas iniciais in silico e in vitro em um novo organoseleneto, 5-Se-(fenil)-3-(ferulico-amido)-timidina (AFAT-Se). Diferentes plataformas in silico foram usadas para explorar as propriedades ADMET e os possíveis efeitos farmacológicos e toxicológicos do AFAT-Se, e seu potencial antitumoral foi avaliado por estudos in vitro. O AFAT-Se cumpriu as regras de Lipinski, exibindo propriedades farmacocinéticas favoráveis, interação com enzimas metabólicas comuns de medicamentos, toxicidades que requerem mais estudos e citotoxicidade contra a linhagem celular tumoral HT-29, evidenciando seu potencial como agente antineoplásico. Portanto, foram identificados alvos moleculares críticos em vias relacionadas ao câncer; sugerindo que o organoseleneto AFAT-Se é uma promissora alternativa para estudos futuros nesta patologia.

Downloads

Não há dados estatísticos.

Biografia do Autor

Daniela Mathes, Universidade Federal de Santa Maria

Mestrado em Ciências Farmacêuticas pela Universidade Federal de Santa Maria.

Letícia Bueno Macedo, Universidade Federal de Santa Maria

Doutorado em Ciências Farmacêuticas pela Universidade Federal de Santa Maria.

Taís Baldissera Pieta, Universidade Federal de Santa Maria

Graduação em Farmácia pela Universidade Federal de Santa Maria.

Michel Mansur Machado, Universidade Federal do Pampa

Doutorado em Ciências Biológicas.

Oscar Endrigo Dorneles Rodrigues, Universidade Federal de Santa Maria

Doutorado em Ciências Biológicas.

Julliano Guerin Leal, Universidade Federal do Pampa

Doutorado em Química pela Universidade Federal de Santa Maria.

Sidne Rodrigues da Silva, Universidade Federal de Santa Maria

Mestrado em Química pela Universidade de Grandes Dourados.

Giovani Rubert Librelotto, Universidade Federal de Santa Maria

Doutorado em Informática pela Universidade do Minho, Portugal(2005).

Clarice Madalena Bueno Rolim, Universidade Federal de Santa Maria

Doutorado em Fármacos e Medicamentos pela Universidade de São Paulo.

Daniele Rubert Nogueira Librelotto, Universidade Federal de Santa Maria

Doutorado em Pesquisa, Desenvolvimento e Controle de Medicamentos pela Universidade de Barcelona.

Referências

Ahmed, S., Alam, W., Aschner, M., Alsharif, K. F., Albrakati, A., Saso, L., & Khan, H. (2022). Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomedicine & Pharmacotherapy, 155, 113797. DOI: https://doi.org/10.1016/j.biopha.2022.113797

Anisimov, V. N., Zabezhinski, M. A., Popovich, I. G., Pliss, G. B., Bespalov, V. G., Alexandrov, V. A., Stukov, A. N., Anikin, I. V., Alimova, I. N., Egormin, P. A., Panchenko, A. V., Piskunova, T. S., Semenchenko, A. V., Tyndyk, M. L., & Yurova, M. N. (2012). Rodent models for the preclinical evaluation of drugs suitable for pharmacological intervention in aging. Expert Opinion on Drug Discovery, 7(1), 85-95. DOI: https://doi.org/10.1517/17460441.2012.642361

Aouidate, A., Ghaleb, A., Ghamali, M., Ousaa, A., Sbai, A., Bouachrine, M., & Lakhlifi, T. (2018). 3D QSAR studies, molecular docking and ADMET evaluation, using thiazolidine derivatives as template to obtain new inhibitors of PIM1 kinase. Computational Biology and Chemistry, 74, 201-211. DOI: https://doi.org/10.1016/j.compbiolchem.2018.03.008

Ayed, K., Nabi, L., Akrout, R., Mrizak, H., Gorrab, A., Bacha, D., Boussen, H., & Gati, A. (2023). Obesity and cancer: Focus on leptin. Molecular biology reports, 50(7), 6177-6189. DOI: https://doi.org/10.1007/s11033-023-08525-y

Cao, N., Li, X., Zhang, W., Wang, Q., Liang, Y., Zhou, F., & Xiao, X. (2022). Research progress of signaling pathways of the natural substances intervene dyslipidemia. Experimental and Therapeutic Medicine, 24(2), 494. DOI: https://doi.org/10.3892/etm.2022.11421

Chagas, C. M., Moss, S., & Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International journal of pharmaceutics, 549(1-2), 133-149. DOI: https://doi.org/10.1016/j.ijpharm.2018.07.046

Constantinescu, T., Lungu, C. N., & Lung, I. (2019). Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules, 24(8), 1505. DOI: https://doi.org/10.3390/molecules24081505

Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R., & Zhang, X. (2019). Circulating microRNAs in cancer: potential and challenge. Frontiers in genetics, 10, 626. DOI: https://doi.org/10.3389/fgene.2019.00626

Doak, B. C., Over, B., Giordanetto, F., & Kihlberg, J. (2014). Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chemistry & biology, 21(9), 1115-1142. DOI: https://doi.org/10.1016/j.chembiol.2014.08.013

Druzhilovskiy, D. S., Rudik, A. V., Filimonov, D. A., Gloriozova, T. A., Lagunin, A. A., Dmitriev, A. V., Pogodin, P. V., Dubovskaya, V. I., Ivanov, S. M., Tarasova, O. A., Bezhentsev, V. M., Murtazalieva, K. A., Semin, M. I., Maiorov, I. S., Gaur, A. S., Sastry, G. N. & Poroikov, V. V. (2017). Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Russian Chemical Bulletin, 66, 1832-1841. DOI: https://doi.org/10.1007/s11172-017-1954-x

Esteves, F., Rueff, J., & Kranendonk, M. (2021). The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family. Journal of xenobiotics, 11(3), 94-114. DOI: https://doi.org/10.3390/jox11030007

Fatima, S., Gupta, P., Sharma, S., Sharma, A., & Agarwal, S. M. (2020). ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future medicinal chemistry, 12(1), 69-87. DOI: https://doi.org/10.4155/fmc-2019-0206

Fong, C. W. (2015). Permeability of the blood–brain barrier: molecular mechanism of transport of drugs and physiologically important compounds. The Journal of membrane biology, 248(4), 651-669. DOI: https://doi.org/10.1007/s00232-015-9778-9

Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A. P. (2018). Organic Selenium Compounds as Potential Chemotherapeutic Agents for Improved Cancer Treatment. Free Radical Biology and Medicine, 127, 80–97. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.05.001

García-Miranda, A., Garcia-Hernandez, A., Castañeda-Saucedo, E., Navarro-Tito, N., & Maycotte, P. (2022). Adipokines as regulators of autophagy in obesity-linked cancer. Cells, 11(20), 3230. DOI: https://doi.org/10.3390/cells11203230

Garrido, A., Lepailleur, A., Mignani, S. M., Dallemagne, P., & Rochais, C. (2020). hERG toxicity assessment: Useful guidelines for drug design. European journal of medicinal chemistry, 195, 112290. DOI: https://doi.org/10.1016/j.ejmech.2020.112290

George, B., Wen, X., Jaimes, E. A., Joy, M. S., & Aleksunes, L. M. (2021). In vitro inhibition of renal OCT2 and MATE1 secretion by antiemetic drugs. International journal of molecular sciences, 22(12), 6439. DOI: https://doi.org/10.3390/ijms22126439

Gomes, L. L., Araújo, A. P. de. Neto., Medeiros, F. L. S. de, Santana, M. T. P., Santos, T. A. dos, Oliveira, H. M. B. F. de., Guênes, G. M. T., Alves, M. A. S. G., Penha, E. S. da., Anjos, R. M. dos., Oliveira, V. F. de., Sousa, A. P. de., & Oliveira, A. A. de. F° (2020). Análise in silico da toxicidade do monoterpeno eucaliptol. Research, Society and Development, 9(5), e158953092-e158953092. DOI: https://doi.org/10.33448/rsd-v9i5.3092

Guan, M., Guo, L., Ma, H., Wu, H., & Fan, X. (2021). Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evidence‐Based Complementary and Alternative Medicine, 2021(1), 5190808. DOI: https://doi.org/10.1155/2021/5190808

Guinan, M., Benckendorff, C., Smith, M., & Miller, G. J. (2020). Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules, 25(9), 2050. DOI: https://doi.org/10.3390/molecules25092050

He, S., Moutaoufik, M. T., Islam, S., Persad, A., Wu, A., Aly, K. A., Fonge, H., Mohan, B., & Cayabyab, F. S. (2020). HERG channel and cancer: a mechanistic review of carcinogenic processes and therapeutic potential. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1873(2), 188355. DOI: https://doi.org/10.1016/j.bbcan.2020.188355

Hu, B., Zhou, X., Mohutsky, M. A., & Desai, P. V. (2020). Structure–property relationships and machine learning models for addressing CYP3A4-mediated victim drug–drug interaction risk in drug discovery. Molecular Pharmaceutics, 17(9), 3600-3608. DOI: https://doi.org/10.1021/acs.molpharmaceut.0c00637

Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L., & Lerman, L. O. (2022). Cellular senescence: the good, the bad and the unknown. Nature Reviews Nephrology, 18(10), 611-627. DOI: https://doi.org/10.1038/s41581-022-00601-z

Ivanović, V., Rančić, M., Arsić, B., & Pavlović, A. (2020). Lipinski’s rule of five, famous extensions and famous exceptions. Chem Naissensis, 3(1), 171-177. DOI: https://doi.org/10.46793/ChemN3.1.171I

Kokic, G., Chernev, A., Tegunov, D., Dienemann, C., Urlaub, H., & Cramer, P. (2019). Structural basis of TFIIH activation for nucleotide excision repair. Nature communications, 10(1), 2885. DOI: https://doi.org/10.1038/s41467-019-10745-5

Kondža, M., Bojić, M., Tomić, I., Maleš, Ž., Rezić, V., & Ćavar, I. (2021). Characterization of the CYP3A4 enzyme inhibition potential of selected flavonoids. Molecules, 26(10), 3018. DOI: https://doi.org/10.3390/molecules26103018

Korzekwa, K., & Nagar, S. (2017). Drug distribution part 2. Predicting volume of distribution from plasma protein binding and membrane partitioning. Pharmaceutical research, 34, 544-551 DOI: https://doi.org/10.1007/s11095-016-2086-y

Lagunin, A. A., Rudik, A. V., Pogodin, P. V., Savosina, P. I., Tarasova, O. A., Dmitriev, A. V., Ivanov, S. M., Biziukova, N. Y., Druzhilovskiy, D. S., Filimonov, D. A., & Poroikov, V. V. (2023). CLC-Pred 2.0: a freely available web application for in silico prediction of human cell line cytotoxicity and molecular mechanisms of action for druglike compounds. International Journal of Molecular Sciences, 24(2), 1689. DOI: https://doi.org/10.3390/ijms24021689

Leal, J. G., Piccoli, B. C., Oliveira, C. S., da Silva, F. D. A., Omage, F. B., da Rocha, J. B. T., ... & Rodrigues, O. E. (2022). Synthesis, antioxidant and antitumoral activity of new 5′-arylchalcogenyl-3′-N-(E)-feruloyl-3′, 5′-dideoxy-amino-thymidine (AFAT) derivatives. New Journal of Chemistry, 46(46), 22306-22313. DOI: https://doi.org/10.1039/D2NJ03487E

Lee, M. van der, Guchelaar, H. J., & Swen, J. J. (2021). Substrate specificity of CYP2D6 genetic variants. Pharmacogenomics, 22(16), 1081-1089. DOI: https://doi.org/10.2217/pgs-2021-0093

Leopoldo, M., Nardulli, P., Contino, M., Leonetti, F., Luurtsema, G., & Colabufo, N. A. (2019). An updated patent review on P-glycoprotein inhibitors (2011-2018). Expert opinion on therapeutic patents, 29(6), 455-461. DOI: https://doi.org/10.1080/13543776.2019.1618273

Li G-M., Pearlman, A. H., & Hsieh, P. (2013). DNA mismatch repair and the DNA damage response. Encyclopedia of Biological Chemistry, 38, 94-101. DOI: https://doi.org/10.1016/j.dnarep.2015.11.019

Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337-341. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007

Liu, L., Michowski, W., Kolodziejczyk, A., & Sicinski, P. (2019). The cell cycle in stem cell proliferation, pluripotency and differentiation. Nature cell biology, 21(9), 1060-1067. DOI: https://doi.org/10.1038/s41556-019-0384-4

Macedo, L. B., Nogueira-Librelotto, D. R., Mathes, D., Vargas, J. M. de., Rosa, R. M. da., Rodrigues, O. E. D., Vinardell, M. P., Monstserrat, M., & Rolim, C. M. B. (2021). Overcoming MDR by Associating Doxorubicin and pH-Sensitive PLGA Nanoparticles Containing a Novel Organoselenium Compound—An In Vitro Study. Pharmaceutics, 14(1), 80. DOI: https://doi.org/10.3390/pharmaceutics14010080

Mathes, D., Macedo, L. B., Pieta, T. B., Maia, B. C., Rodrigues, O. E. D., Leal, J. G., Wendt, M., Rolim, C. M. B., Mitjans, M., & Nogueira-Librelotto, D. R. (2024). Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer. Pharmaceutics, 16(5), 590. DOI: https://doi.org/10.3390/pharmaceutics16050590

Matthews, H. K., Bertoli, C., & Bruin, R. A. de. (2022). Cell cycle control in cancer. Nature reviews Molecular cell biology, 23(1), 74-88. DOI: https://doi.org/10.1038/s41580-021-00404-3

Mudaliar, P., Nalawade, A., Devarajan, S., & Aich, J. (2022). Therapeutic potential of autophagy activators and inhibitors in lung and breast cancer-a review. Molecular Biology Reports, 49(11), 10783-10795. DOI: https://doi.org/10.1007/s11033-022-07711-8

Niraj, J., Färkkilä, A., & D'Andrea, A. D. (2019). The Fanconi anemia pathway in cancer. Annual review of cancer biology, 3(1), 457-478. DOI: https://doi.org/10.1146/annurev-cancerbio-030617-050422

Odi, R., Bibi, D., Wager, T., & Bialer, M. (2020). A perspective on the physicochemical and biopharmaceutic properties of marketed antiseizure drugs—From phenobarbital to cenobamate and beyond. Epilepsia, 61(8), 1543-1552. DOI: https://doi.org/10.1111/epi.16597

Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry, 58(9), 4066-4072. DOI: https://doi.org/10.1021/acs.jmedchem.5b00104

Pires, D. E., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. Computational drug discovery and design, 271-284. DOI: https://doi.org/10.1007/978-1-4939-7756-7_14

Pouwels, S., Sakran, N., Graham, Y., Leal, A., Pintar, T., Yang, W., Kassir, R., Singhal, R., Mahawar, K., & Ramnarain, D. (2022). Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC endocrine disorders, 22(1), 63. DOI: https://doi.org/10.1186/s12902-022-00980-1

Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 147-172. DOI: https://doi.org/10.1002/wcms.1240

Real, M., Barnhill, M. S., Higley, C., Rosenberg, J., & Lewis, J. H. (2019). Drug-induced liver injury: highlights of the recent literature. Drug safety, 42, 365-387. DOI: https://doi.org/10.1007/s40264-018-0743-2

Rowland, M., Roberts, M. S., & Pang, K. S. (2022). In defense of current concepts and applications of clearance in drug development and therapeutics. Drug Metabolism and Disposition, 50(2), 187-190. DOI: https://doi.org/10.1124/dmd.121.000637

Sak, M., Al-Fayz, Y. S., Elsawy, H., & Shaaban, S. (2022). Novel Organoselenium Redox Modulators with Potential Anticancer, Antimicrobial, and Antioxidant Activities. Journal of Organoselenium Research, 11(7), 1931. DOI: https://doi.org/10.3390/antiox11071231

Shields, M. (2017). Chemotherapeutics. In Badal, S. & Delgoda, R., (Eds.). Pharmacognosy: Fundamentals, Applications and Strategies (pp. 295-313). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-802104-0.00014-7

Shultz, M. D. (2018). Two decades under the influence of the rule of five and the changing properties of approved oral drugs: miniperspective. Journal of Medicinal Chemistry, 62(4), 1701-1714. DOI: https://doi.org/10.1021/acs.jmedchem.8b00686

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a cancer journal for clinicians, 73(1), 17-48. DOI: https://doi.org/10.3322/caac.21763

Steinbrueck, A., Sedgwick, A. C., Brewster, J. T., Yan, K. C., Shang, Y., Knoll, D. M., Vargas-Zúñiga, G. I., He, X.-P., Tian, H. & Sessler, J. L. (2020). Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chemical Society Reviews, 49(12), 3726-3747. DOI: https://doi.org/10.1039/C9CS00373H

Sun, Y., McCorvie, T. J., Yates, L. A., & Zhang, X. (2020). Structural basis of homologous recombination. Cellular and Molecular Life Sciences, 77(1), 3-18. DOI: https://doi.org/10.1007/s00018-019-03365-1

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S. Bork, P., Jensen, L. J., & Mering, C. von. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic acids research, 51(D1), D638-D646. DOI: https://doi.org/10.1093/nar/gkac1000

Taneja, G., Chu, C., Maturu, P., Moorthy, B., & Ghose, R. (2018). Role of c-Jun-N-terminal kinase in pregnane X receptor-mediated induction of human cytochrome P4503A4 in vitro. Drug Metabolism and Disposition, 46(4), 397-404. DOI: https://doi.org/10.1124/dmd.117.079160

Ubhi, T., & Brown, G. W. (2019). Exploiting DNA replication stress for cancer treatment. Cancer research, 79(8), 1730-1739. DOI: https://doi.org/10.1158/0008-5472.CAN-18-3631

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615-2623. DOI: https://doi.org/10.1021/jm020017n

Yu, X. (2020). Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models. Ecotoxicology and Environmental Safety, 190, 110146. DOI: https://doi.org/10.1016/j.ecoenv.2019.110146

Wanat, K. (2020). Biological barriers, and the influence of protein binding on the passage of drugs across them. Molecular biology reports, 47(4), 3221-3231. DOI: https://doi.org/10.1007/s11033-020-05361-2

Wang, Y., & Chen, X. (2020). A joint optimization QSAR model of fathead minnow acute toxicity based on a radial basis function neural network and its consensus modeling. RSC advances, 10(36), 21292-21308. DOI: https://doi.org/10.1039/D0RA02701D

Williams, A. B., & Schumacher, B. (2016). p53 in the DNA-damage-repair process. Cold Spring Harbor perspectives in medicine, 6(5), a026070. DOI: https://doi.org/10.1101/cshperspect.a026070

Wright, W. C., Chenge, J., & Chen, T. (2019). Structural perspectives of the CYP3A family and their small molecule modulators in drug metabolism. Liver research, 3(3-4), 132-142. DOI: https://doi.org/10.1016/j.livres.2019.08.001

Zadorozhnii, P. V., Kiselev, V. V., & Kharchenko, A. V. (2022). In silico ADME profiling of salubrinal and its analogues. Future Pharmacology, 2(2), 160-197. DOI: https://doi.org/10.3390/futurepharmacol2020013

Zeiger, E. (2019). The test that changed the world: The Ames test and the regulation of chemicals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 841, 43-48. DOI: https://doi.org/10.1016/j.mrgentox.2019.05.007

Publicado

2025-04-11

Como Citar

Mathes, D., Macedo, L. B., Pieta, T. B., Machado, M. M., Rodrigues, O. E. D., Leal, J. G., Silva, S. R. da, Librelotto, G. R., Rolim, C. M. B., & Librelotto, D. R. N. (2025). Explorando as propriedades ADMET e potenciais mecanismos anticancerígenos de um novo organoseleneto utilizando farmacologia de rede e estudo de atividade antitumoral in vitro. Ciência E Natura, 47, e88474. https://doi.org/10.5902/2179460X88474

Edição

Seção

Química

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.