Forecast of total flows for medium-term horizon via data-driven modeling

Authors

DOI:

https://doi.org/10.5902/2179460X87856

Keywords:

Inflow forecast, Machine learning, Weka, Reservoir operation

Abstract

This study presents the application of artificial neural networks (ANN), k-nearest neighbors algorithm (KNN), and support vector regression (SVR) for modeling the prediction of inflows to the Sobradinho reservoir in Bahia, Brazil. Using the Weka software, six formulations were tested for 3-month forecasts, with data divided into cross-validation and calibration-validation schemes. Efficiency was evaluated using the Nash-Sutcliffe coefficient, highlighting the superiority of SVR. The inclusion of attributes such as average flow and precipitation improved efficiencies. The model using KNN with 13 neighbors was incorporated into an enhanced implicit stochastic optimization strategy for the operation of the reservoir. This model was compared to other operational methods, showing superiority in vulnerability index.

Downloads

Download data is not yet available.

Author Biographies

Rute Santos Porto Lima, Universidade Federal de Sergipe

Student of Civil Engineering at the Federal University of Sergipe

Alcigeimes Batista Celeste, Universidade Federal de Sergipe

Associate Professor of Civil Engineering at the Federal University of Sergipe

References

Akbari, M., Overloop, P. J. v., & Afshar, A. (2010). Clustered k nearest neighbor algorithm for daily inflow forecasting. Water Resources Management, 25(5), 1341–1357. DOI: https://doi.org/10.1007/s11269-010-9748-z

Ávila, L., Mine, M. R. M., & Kaviski, E. (2020). Probabilistic long-term reservoir operation employing copulas and implicit stochastic optimization. Stochastic Environmental Research and Risk Assessment, 34(7), 931–947. DOI: https://doi.org/10.1007/s00477-020-01826-9

Celeste, A. B. & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429–1443. DOI: https://doi.org/10.1016/j.advwatres.2009.06.008

Chiamsathit, C., Adeloye, A. J., & Bankaru-Swamy, S. (2016). Inflow forecasting using artificial neural networks for reservoir operation. Proceedings of the International Association of Hydrological Sciences, 373, 209–214. DOI: https://doi.org/10.5194/piahs-373-209-2016

Giuliani, M., Lamontagne, J. R., Reed, P. M., & Castelletti, A. (2021). A state-of-the-art review of optimal reservoir control for managing conflicting demands in a changing world. Water Resources Research, 57(12). DOI: https://doi.org/10.1029/2021WR029927

Khadr, M. & Schlenkhoff, A. (2021). GA-based implicit stochastic optimization and RNN-based simulation for deriving multi-objective reservoir hedging rules. Environmental Science and Pollution Research, 28(15), 19107–19120. DOI: https://doi.org/10.1007/s11356-020-12291-w

Maddu, R., Pradhan, I., Ahmadisharaf, E., Singh, S. K., & Shaik, R. (2022). Short-range reservoir inflow forecasting using hydrological and large-scale atmospheric circulation information. Journal of Hydrology, 612, 128153. DOI: https://doi.org/10.1016/j.jhydrol.2022.128153

Morettin, P. A. & Singer, J. M. S. (2023). Estatística e Ciência de Dados. LTC, Rio de Janeiro.

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. DOI: https://doi.org/10.13031/2013.23153

Nagy, I. V., Asante-Duah, K., & Zsuffa, I. (2002). Hydrological Dimensioning and Operation of Reservoirs: Practical Design Concepts and Principles. Springer Netherlands. DOI: https://doi.org/10.1007/978-94-015-9894-1

Nash, J. & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10(3), 282–290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6

Refsgaard, J. C. (1990). Terminology, modelling protocol and classification of hydrological model codes. In Abbott, M. B. & Refsgaard, J. C., editors, Distributed Hydrological Modelling, pages 17–39. Springer Netherlands. DOI: https://doi.org/10.1007/978-94-009-0257-2_2

Santana, R. F. & Celeste, A. B. (2021). Stochastic reservoir operation with data-driven modeling and inflow forecasting. Journal of Applied Water Engineering and Research, 10(3), 212–223. DOI: https://doi.org/10.1080/23249676.2021.1964389

Shu, X., Ding, W., Peng, Y., Wang, Z., Wu, J., & Li, M. (2021). Monthly streamflow forecasting using convolutional neural network. Water Resources Management, 35(15), 5089–5104. DOI: https://doi.org/10.1007/s11269-021-02961-w

Solomatine, D. P. (2006). Data-driven modeling and computational intelligence methods in hydrology. In Anderson, M. G. & McDonnell, J. J., editors, Encyclopedia of Hydrological Sciences. Wiley. DOI: https://doi.org/10.1002/0470848944.hsa021

Solomatine, D. P., Maskey, M., & Shrestha, D. L. (2007). Instance-based learning compared to other data-driven methods in hydrological forecasting. Hydrological Processes, 22(2), 275–287. DOI: https://doi.org/10.1002/hyp.6592

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Amsterdam.

Wu, M.-C., Lin, G.-F., & Lin, H.-Y. (2012). Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map. Hydrological Processes, 28(2), 386–397. DOI: https://doi.org/10.1002/hyp.9584

Wu, W., Eamen, L., Dandy, G., Razavi, S., Kuczera, G., & Maier, H. R. (2023). Beyond engineering: A review of reservoir management through the lens of wickedness, competing objectives and uncertainty. Environmental Modelling & Software, 167, 105777. DOI: https://doi.org/10.1016/j.envsoft.2023.105777

Published

2025-03-31

How to Cite

Lima, R. S. P., & Celeste, A. B. (2025). Forecast of total flows for medium-term horizon via data-driven modeling. Ciência E Natura, 47, e87856. https://doi.org/10.5902/2179460X87856