Phytochemical profiling, antioxidant, and phytotoxic potentials of Erythrina speciosa Andrews leaves
DOI:
https://doi.org/10.5902/2179460X86537Keywords:
Erythrina, Phytochemistry, Flavonoids, Phytotoxicity, Antioxidant activityAbstract
In order to enhance the chemical and biological understanding of the genus Erythrina, this study evaluated the chemical composition, phytotoxicity, and antioxidant potential of the hexane (Hex), dichloromethane (DCM), and ethyl acetate (EtOAc) phases from the methanolic extract of E. speciosaleaves. The DCM and EtOAc phases exhibited significant antioxidant activity, with DPPH radical reduction percentages exceeding 90%. Phytotoxicity tests revealed the phytotoxic potential of the DCM and EtOAc phases, inhibiting the growth of L. sativa seedlings by more than 40% and 30%, respectively, at concentrations of 1000 ppm and 500 ppm. Phytochemical analysis revealed a high total phenolic content in the DCM and EtOAc phases, where flavonoids such as apigenin, abyssinone II, wighteone, sigmoidin I, orientanol E, vitexin, and quercitrin were detected through techniques such as high-performance liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS/MS), and thin layer chromatography (TLC). These compounds may be associated with the observed antioxidant potential and the inhibitory effects observed on L. sativa. However, further research on the isolated effects of these metabolites is warranted.
Downloads
References
Ahmed, Z. et al. (2020). In vitro cytotoxic and antimicrobial activities of Erythrina suberosa (Roxb) bark. J. Pharm. Bioallied Sci. 12(2), 210-216. doi: 10.4103/jpbs.JPBS_223_19. DOI: https://doi.org/10.4103/jpbs.JPBS_223_19
Alam, M. K., Rana, Z. H., Islam, S. N., & Akhtaruzzaman, M.(2020). Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem., 320(1), e126646. doi: 10.1016/j.foodchem.2020.126646. DOI: https://doi.org/10.1016/j.foodchem.2020.126646
Almeida, E. R. (1993). Plantas medicinais brasileiras: conhecimentos populares e científicos. São Paulo: Hemus.
Alves, T. A. et al. (2022). Phytotoxicity and cytogenetic action mechanism of leaf extracts of Psidium cattleyanum Sabine in plant bioassays. Braz. J. Biol., 84(1), e260985. doi: 10.1590/1519-6984.260985. DOI: https://doi.org/10.1590/1519-6984.260985
Amorim, J. et al. (2019). The ethanolic extract from Erythrina mulungu Benth. flowers attenuate allergic airway inflammation and hyperresponsiveness in a murine model of asthma. J. Ethnopharmacol., 242(1), e111467. doi: 10.1016/j.jep.2018.08.009. DOI: https://doi.org/10.1016/j.jep.2018.08.009
Baratelli, T. G. et al. (2012). Phytochemical and allelopathic studies of Terminalia catappa L. (Combretaceae). Biochem. Syst. Ecol., 41(1), 119-125. doi: 10.1016/j.bse.2011.12.008. DOI: https://doi.org/10.1016/j.bse.2011.12.008
Bedane, K. G. et al. (2016). Flavanones of Erythrina livingstoniana with antioxidant properties. Fitoterapia, 108(1), 48-54. doi: 10.1016/j.fitote.2015.11.014. DOI: https://doi.org/10.1016/j.fitote.2015.11.014
Bertoldi, C., Leo, M., Braca, A., & Ercoli, L. (2009). Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology, 19(3),169-176. doi:10.1007/s00049.009.0019-5. DOI: https://doi.org/10.1007/s00049-009-0019-5
Bhagyasri, G. et al. (2017). Analgesic and anti-inflammatory activity of leaf extracts of Erythrina variegate. Indo Am. J. Pharm. Res., 7(9), 681-692. doi: 10.5281/zenodo.1036569.
Chacha, M., Bojase-Moleta, G., & Majinda, R. R. (2005). Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima. Phytochemistry, 66(1), 99-104. doi: 10.1016/j.phytochem.2004.10.013. DOI: https://doi.org/10.1016/j.phytochem.2004.10.013
Chacon, D.S. et al. (2022). Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. Front. Plant Sci., 13(1), e947558. doi: 10.3389/fpls.2022.947558 DOI: https://doi.org/10.3389/fpls.2022.947558
Chatatikun, M., & Chiabchalard, A. (2013). Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts. J. Chem. Pharm. Res., 5(4), 97-102.
Cui, L. et al. (2010). New prenylated flavanones from Erythrina abyssinica with Protein Tyrosine Phosphatase 1B (PTP1B) inhibitory activity. Planta Med., 76(7), 713-718. doi: 10.1055/s-0029.124.0682. DOI: https://doi.org/10.1055/s-0029-1240682
Diaz, N. G. N., & Palacios, S. M. (2013). Phytotoxicity of secondary metabolites isolated from Flourensia oolepis. Chem. Biodivers., 10(7), 1295-1304. doi: 10.1002/cbdv.201200204. DOI: https://doi.org/10.1002/cbdv.201200204
Djiogue, S. et al. (2009). Isoflavonoids from Erythrina poeppigiana: evaluation of their binding affinity for the estrogen receptor. J. Nat. Prod. 72(9),1603-1607. doi: 10.1021/np900271m. DOI: https://doi.org/10.1021/np900271m
Dkhil, M. A. et al. (2021). Medicinal plants as a fight against murine blood-stage malaria. Saudi J. Biol. Sci. 28(3), 1723-1738. doi: 10.1016/j.sjbs.2020.12.014. DOI: https://doi.org/10.1016/j.sjbs.2020.12.014
El-Masry, S. et al. (2010). Flavone glycosides from Erythrina caffra. Planta Med., 16(4), 217-222. doi: 10.1055/s-0030.125.1826. DOI: https://doi.org/10.1055/s-0030-1251826
Fahmy, N. M. et al. (2018). Comprehensive review on flavonoids biological activities of Erythrina plant species. Ind. Crops Prod., 123(1), 500-538. doi: 10.1016/j.indcrop.2018.06.028. DOI: https://doi.org/10.1016/j.indcrop.2018.06.028
Gabr, S. K. et al. (2019). Antioxidant activity and molecular docking study of Erythrina neillii polyphenolics. S. Afr. J. Bot. 121(1), 470-477. doi: 10.1016/j.sajb.2018.12.011. DOI: https://doi.org/10.1016/j.sajb.2018.12.011
Ganbaatar, C. et al. (2015). Flavonoid glycosides from the aerial parts of Polygonatum odoratum (Mill.) druce growing in Mongolia. Op. Nat. Prod. J., 8(1),1-7. DOI: https://doi.org/10.2174/1874848101508010001
García-Mateos, R., Peña-Valdivia, C. B., & Soto-Hernández, M. (2022). Phytotoxicity of crude alkaloid fractions from Erythrina americana. Rev. Soc. Quim. Mex., 46(1):4-9.
Garín-Aguilar, M. E. et al. (2000). Effect of crude extracts of Erythrina americana Mill. on aggressive behavior in rats. J Ethnopharmacol., 69(2),189-196. doi: 10.1016/s0378-8741(99)00121-x. DOI: https://doi.org/10.1016/S0378-8741(99)00121-X
Gilbert, B., & Favoreto, R. (2012). Erythrina sp. Fabaceae (Leguminosae, Faboideae). Fitos, 7(3), 185-197. DOI: https://doi.org/10.32712/2446-4775.2012.152
Gris, D. et al. (2019). Secondary metabolites that could contribute to the monodominance of Erythrina fusca in the Brazilian Pantanal. DOI: https://doi.org/10.1007/s10646-019-02133-y
Ecotoxicology, 28(10), 1232-1240. doi: 10.1007/s10646.019.02133-y.
Heim, K. E., Tagliaferro, A. R., & Bobylia, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure activity relationships. J.
Nutr. Biochem. 13(10), 572-584. doi: 10.1016/S0955-2863(02)00208-5. DOI: https://doi.org/10.1016/S0955-2863(02)00208-5
Hikita, K. et al. (2015). Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells DOI: https://doi.org/10.1177/1934578X1501000924
through Inhibition of Glyoxalase I. Nat Prod Commun. 10(9),1581-1584.
Hooper, A. M. et al. (2010). Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry, 71(8-9), 904-908. doi: 10.1016/j.phytochem.2010.02.015. DOI: https://doi.org/10.1016/j.phytochem.2010.02.015
Imatomi, M. et al. (2013). Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem. Syst. and Ecol. 46(1), 29-35. doi: 10.1016/j.bse.2012.09.005. DOI: https://doi.org/10.1016/j.bse.2012.09.005
Juma, B., & Majinda, R.R. (2006). Constituents of Erythrina lysistemon: their brine shrimp lethality, antimicrobial and radical scavenging activities. Nat. Prod. Commun. 1(2),101-107. doi: 10.1177/1934578X060.010.0204. DOI: https://doi.org/10.1177/1934578X0600100204
Kenny, O. et al. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem., 141(4), 4295-302. doi: 10.1016/j.foodchem.2013.07.016. DOI: https://doi.org/10.1016/j.foodchem.2013.07.016
Koch, K. et al. (2019). Abyssinone V, a prenylated flavonoid isolated from the stem bark of Erythrina melanacantha increases oxidative stress and decreases stress resistance in Caenorhabditis elegans. J. Pharm. Pharmacol., 71(6),1007-1016. doi: 10.1111/jphp.13074. DOI: https://doi.org/10.1111/jphp.13074
Krenn, L., Unterrieder, I., & Ruprechter, R. (2002). Quantification of isoflavones in red clover by high-performance liquid chromatography. J. Chromatogr. B, 777(1), 123-128. doi: 10.1016/s1570-0232(02)00079-x. DOI: https://doi.org/10.1016/S1570-0232(02)00079-X
Lollato, G., Scarminio, I. S., & Moreira, E. G. (2010). Behavioral effects of aqueous and dichloromethane extracts of Erythrina speciosa Andrews, Fabaceae, leaves in mice. Braz J Pharmacog., 20(6), 939-944. doi: 10.1590/S0102-695X201.000.5000048. DOI: https://doi.org/10.1590/S0102-695X2010005000048
Martins, J., & Brijesh, S. (2020). Anti-depressant activity of Erythrina variegata bark extract and regulation of monoamine oxidase activities in mice. J. Ethnopharmacol., 248(1), e112280. doi: 10.1016/j.jep.2019.112280. DOI: https://doi.org/10.1016/j.jep.2019.112280
Martins, M. V. (2020). Erythrina in Flora do Brasil [Reflora]. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22965.
Martins, M. V., & Tozzi, A. M. G. A. (2018). Nomenclatural and taxonomic changes in Brazillian Erythrina (Leguminosae, Papilionoideae, Phaseoleae). J. Torrey Bot. Soc., 145(4), 398-402. DOI: https://doi.org/10.3159/TORREY-D-18-00003.1
Merino, F. J. Z. et al. (2018). A study of the phytotoxic effects of the aerial parts of Senecio westermanii Dusén (Asteraceae) on Lactuca sativa L. and Allium cepa L. seeds. Braz. J. Pharm. Sci. 54(3), e17135. doi: 10.1590/s2175.979.0201800.031.7135. DOI: https://doi.org/10.1590/s2175-97902018000317135
Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19 (10),16240-16265. doi:10.3390/molecules191016240. DOI: https://doi.org/10.3390/molecules191016240
Mishra, K., Ojha, H., & Chaudhury, N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem., 130(4), 1036-1043. doi: 10.1016/j.foodchem.2011.07.127. DOI: https://doi.org/10.1016/j.foodchem.2011.07.127
Moalin, M. et al. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636-9650. doi: 10.3390/molecules16119636. DOI: https://doi.org/10.3390/molecules16119636
Mohanta, Y. et al. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci., 17(4), 14-21. doi: 10.3389/fmolb.2017.00014. DOI: https://doi.org/10.3389/fmolb.2017.00014
Nakamura, C. et al. (2021). High sensitivity of roots to salt stress as revealed by novel tip bioassay in wheat seedlings. Biotechnol. Biotechnol. Equip., 35(1), 238-246. doi: 10.1080/13102.818.2020.1852890. DOI: https://doi.org/10.1080/13102818.2020.1852890
Nakanishi, K. (1982). Recent studies on bioactive compounds from plants. J. Nat. Prod., 45(1), 15-26. doi: 10.1021/np50019a002. DOI: https://doi.org/10.1021/np50019a002
Nebo, L. et al. (2014). Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and
Meliaceae families. Phytochem. Lett. 8(1), 226-232. doi: 10.1016/j.phytol.2014.02.010. DOI: https://doi.org/10.1016/j.phytol.2014.02.010
Nguyen, P.H. et al. (2010). Prenylated pterocarpans as bacterial neuraminidase inhibitors. Bioorg. Med. Chem., 18(9), 3335-3344. doi: 10.1016/j.bmc.2010.03.005. DOI: https://doi.org/10.1016/j.bmc.2010.03.005
Nguyen, P. H. et al. (2012). New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorg. Med. Chem., 20(21), 6459-6464. doi: 10.1016/j.bmc.2012.08.024. DOI: https://doi.org/10.1016/j.bmc.2012.08.024
Nkengfack, A. E. et al. (1997). Phenolic metabolites from Erythrina species. Phytochemistry, 46(3), 573-578. doi: 10.1016/s0031-9422(97)00291-4. DOI: https://doi.org/10.1016/S0031-9422(97)00291-4
Nkengfack, A. E. et al. (2001). Cytotoxic isoflavones from Erythrina indica. Phytochemistry, 58(1), 1113-1120. doi: 10.1016/s0031-9422(01)00368-5. DOI: https://doi.org/10.1016/S0031-9422(01)00368-5
Nyandoro, S. S. et al. (2017). Flavonoids from Erythrina schliebenii. J. Nat. Prod. 80(2), 377-383. doi: 10.1021/acs.jnatprod.6b00839. DOI: https://doi.org/10.1021/acs.jnatprod.6b00839
Ogunsanya, H. Y. et al. (2022). Belgian endive-derived biostimulants promote shoot and root growth in vitro. Sci. Rep., (12)1, 8792-8801. doi: 10.1038/s41598.022.12815-z. DOI: https://doi.org/10.1038/s41598-022-12815-z
Oliveira, D. R. et al. (2014). Flavones from Erythrina falcata are modulators of fear memory. BMC Complement. Altern. Med., 14(1), 288-292. doi: 10.1186/1472-6882-14-288. DOI: https://doi.org/10.1186/1472-6882-14-288
Oliveira, M. S. G. (2009). Estudo fitoquímico e avaliação antinociceptiva e anti-inflamatória de Erythrina mulungu (Fabaceae). [Dissertação Mestrado em Química, Universidade Federal de Alagoas]. Repositório Institucional da UFAL. https://www.repositorio.ufal.br/handle/riufal/1081
Passreiter, C. M. et al. (2015). Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry, 117(1), 237-244. doi: 10.1016/j.phytochem.2015.04.002. DOI: https://doi.org/10.1016/j.phytochem.2015.04.002
Pillay, C. C. N. et al. (2001). Cyclooxygenase inhibiting and anti-bacterial activities of South African Erythrina species. J. Ethnopharmacol., 74(1), 231-237. doi: 10.1016/s0378-8741(00)00366-4. DOI: https://doi.org/10.1016/S0378-8741(00)00366-4
Pinto, G. F. S., Roma, L. P., & Kolb, R. M. (2023). Phytotoxicity of organic extracts of five medicinal plants of the neotropical savana. Braz. J. Biol., 83(1), e270122. doi: 10.1590/1519-6984.270122. DOI: https://doi.org/10.1590/1519-6984.270122
Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. DOI: https://doi.org/10.1016/j.fitote.2011.01.018
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free
Radic. Biol. Med., 20(7), 933-956. doi: 10.1016/0891-5849(95)02227-9. DOI: https://doi.org/10.1016/0891-5849(95)02227-9
Rosa, D. S. et al. (2012). Erysothrine, an alkaloid extracted from flowers of Erythrina mulungu Mart. ex Benth: evaluating its anticonvulsant and anxiolytic potential. Epilepsy Behav., 23(3), 205-212. doi: 10.1016/j.yebeh.2012.01.003. DOI: https://doi.org/10.1016/j.yebeh.2012.01.003
Rukachaisirikul, T., Chokchaisiri, S., & Suksamram, A. (2014). Chemical constituents of the roots of Erythrina subumbrans. Chem. Nat. Comp., 49(6), 968-969. doi: 10.1007/s10600.014.0838-7. DOI: https://doi.org/10.1007/s10600-014-0838-7
Sadgrove, N. J. et al. (2020). Antimicrobial Isoflavones and Derivatives from Erythrina (Fabaceae): Structure Activity Perspective (Sar & Qsar) on Experimental and Mined Values Against Staphylococcus aureus. Antibiotics (Basel). 9(5), 223-229. doi: 10.3390/antibiotics9050223. DOI: https://doi.org/10.3390/antibiotics9050223
Sakat, S., & Juvekar, A. (2010). Comparative study of Erythrina indica Lam. (Fabaceae) leaves extracts for antioxidant activity. J. Young Pharm., 2(1), 63-67. doi: 10.4103/0975-1483.62216. DOI: https://doi.org/10.4103/0975-1483.62216
Santos, A. E. et al. (2014). Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit. Vectors, 28(7), 130-139. doi: 10.1186/1756-3305-7-130. DOI: https://doi.org/10.1186/1756-3305-7-130
Santos, W. P. et al. (2012). In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts. Pharm. Biol., 50(7), 919-24. doi: 10.3109/13880.209.2011.649429. DOI: https://doi.org/10.3109/13880209.2011.649429
Shajib, M. T. et al. (2012). Phytotoxic effect, uptake, and transformation of biochanin A in selected weed species. J. Agric. Food Chem., 60(43), 10715-10722. doi: 10.1021/jf3023589. DOI: https://doi.org/10.1021/jf3023589
Silva, M. M. et al. (2002). Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic. Res., 36(11), 1219-27. doi: 10.1080/198.107.1576021.000.016472. DOI: https://doi.org/10.1080/198-1071576021000016472
Soares, G. L. G. et al. (2012). Potencial alelopático do extrato aquoso de folhas de algumas leguminosas arbóreas brasileiras. Floresta e Ambiente, 9(1), 119-126.
Tanaka, H., Tanaka, T., & Etoh, H. (1998). Two pterocarpans from Erythrina orientalis. Phytochemistry, 47(3), 475-477. DOI: https://doi.org/10.1016/S0031-9422(97)00596-7
Tanaka, H. et al. (2001). Erysubins C-F, four isoflavonoids from Erythrina suberosa var. glabrescences. Phytochemistry, 56(1), 769-773. doi: 10.1016/s0031-9422(00)00441-6. DOI: https://doi.org/10.1016/S0031-9422(00)00441-6
Tauseef, S. et al. (2013). In vitro antioxidant analysis of five medicinally important plants. J. Pharmacogn. Phytochem., 2(4),183-188.
Thongmee, P., & Itharat, A. (2016). Anti-inflammatory activities of Erythrina variegata bark ethanolic extract. J. Med. Assoc. Thai., 99(4), 166-171.
Tigre, R. C. et al. (2012). Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicol. Environ. Saf., 84(1), 125-132. doi: 10.1016/j.ecoenv.2012.06.026. DOI: https://doi.org/10.1016/j.ecoenv.2012.06.026
Tuenter, E. et al. (2019). Antiplasmodial prenylated flavonoids from stem bark of Erythrina latissima. Phytochem. Lett., 30(1), 169-172. doi: 10.1016/J.PHYTOL.2019.02.001. DOI: https://doi.org/10.1016/j.phytol.2019.02.001
Vasconcelos, S. M. L. et al. (2007). Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quim. Nova, 30(5), 1323-1338. doi: 10.1590/S0100.404.2200700.050.0046. DOI: https://doi.org/10.1590/S0100-40422007000500046
Viana, A. R. et al. (2023). Phytochemical and biological characterization of aqueous extract of Vassobia breviflora on proliferation and viability of melanoma cells: involvement of purinergic pathway. J. Toxicol. Environ. Health A., 86(17), 632-652. DOI: 10.1080/15287.394.2023.2233989. DOI: https://doi.org/10.1080/15287394.2023.2233989
Viana, A. R. et al. (2022). Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract. J. Toxicol. Environ. Health A., 86(3), 51-68. DOI: 10.1080/15287.394.2022.2156956. DOI: https://doi.org/10.1080/15287394.2022.2156956
Viana, A. R. et al. (2022a). Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. J. Toxicol. Environ. Health A., 85(23), 972-987. doi: 10.1080/15287.394.2022.2130844. DOI: https://doi.org/10.1080/15287394.2022.2130844
Waffo, A. F. K. et al. (2006). Flavones and isoflavones from the west African Fabaceae Erythrina vogelii. Phytochemistry, 67(5), 459-463. DOI: https://doi.org/10.1016/j.phytochem.2005.09.022
Wang, X. et al. (2020). Flavonoids and antioxidant activity of rare and endangered fern: Isoetes sinensis. PLoS One, 15(5), e0232185. doi: 10.1371/journal.pone.0232185. DOI: https://doi.org/10.1371/journal.pone.0232185
Watjen, W. et al. (2008). Prenylated flavonoid derivatives from the bark of Erythrina addisoniae. J. Nat. Prod., 71(1), 735-738. doi: 10.1021/np070417j. DOI: https://doi.org/10.1021/np070417j
Weston, L.A., Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol. 39(2), 283-297. doi: 10.1007/s10886.013.0248-5. DOI: https://doi.org/10.1007/s10886-013-0248-5
Wintola, O. A. et al. (2021). Chemical composition, antioxidant, activities and antibacterial acitivities of essential oil from Erythrina caffra growing in South Africa. Heliyon, 7(6), e07244. doi: 10.1016/j.heliyon.2021.e07244. DOI: https://doi.org/10.1016/j.heliyon.2021.e07244
Yenesew, A. et al. (2012). The antiplasmodial and radical scavenging activities of flavonoids of Erythrina burttii. Acta Trop., 123(2), 123-127. doi: 10.1016/j.actatropica.2012.04.011. DOI: https://doi.org/10.1016/j.actatropica.2012.04.011
Yu, D. et al. (2000). Studies on chemical constituents of Erythrina arborescens. Zhongguo Zhongyao Zazhi, 25(6), 353-355.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.