Phytochemical profiling, antioxidant, and phytotoxic potentials of Erythrina speciosa Andrews leaves

Authors

DOI:

https://doi.org/10.5902/2179460X86537

Keywords:

Erythrina, Phytochemistry, Flavonoids, Phytotoxicity, Antioxidant activity

Abstract

In order to enhance the chemical and biological understanding of the genus Erythrina, this study evaluated the chemical composition, phytotoxicity, and antioxidant potential of the hexane (Hex), dichloromethane (DCM), and ethyl acetate (EtOAc) phases from the methanolic extract of E. speciosaleaves. The DCM and EtOAc phases exhibited significant antioxidant activity, with DPPH radical reduction percentages exceeding 90%. Phytotoxicity tests revealed the phytotoxic potential of the DCM and EtOAc phases, inhibiting the growth of L. sativa seedlings by more than 40% and 30%, respectively, at concentrations of 1000 ppm and 500 ppm. Phytochemical analysis revealed a high total phenolic content in the DCM and EtOAc phases, where flavonoids such as apigenin, abyssinone II, wighteone, sigmoidin I, orientanol E, vitexin, and quercitrin were detected through techniques such as high-performance liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS/MS), and thin layer chromatography (TLC). These compounds may be associated with the observed antioxidant potential and the inhibitory effects observed on L. sativa. However, further research on the isolated effects of these metabolites is warranted.

Downloads

Author Biographies

Alda Ernestina dos Santos, Instituto Federal de Educação

PhD in Natural Products Chemistry from the Natural Products Research Institute at UFRJ. Professor at the Department of Sciences and Languages ​​at the Federal Institute of Minas Gerais.

Naomi Kato Simas, Universidade Federal do Rio de Janeiro

PhD in Natural Products Chemistry from the Natural Products Research Institute at UFRJ. Professor at the Faculty of Pharmacy at UFRJ.

Ricardo Machado Kuster, Universidade Federal do Espírito Santo

PhD in Natural Products Chemistry from the Natural Products Research Institute at UFRJ. Professor at the Department of Chemistry at the Federal University of Espírito Santo (UFES).

References

Ahmed, Z. et al. (2020). In vitro cytotoxic and antimicrobial activities of Erythrina suberosa (Roxb) bark. J. Pharm. Bioallied Sci. 12(2), 210-216. doi: 10.4103/jpbs.JPBS_223_19. DOI: https://doi.org/10.4103/jpbs.JPBS_223_19

Alam, M. K., Rana, Z. H., Islam, S. N., & Akhtaruzzaman, M.(2020). Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem., 320(1), e126646. doi: 10.1016/j.foodchem.2020.126646. DOI: https://doi.org/10.1016/j.foodchem.2020.126646

Almeida, E. R. (1993). Plantas medicinais brasileiras: conhecimentos populares e científicos. São Paulo: Hemus.

Alves, T. A. et al. (2022). Phytotoxicity and cytogenetic action mechanism of leaf extracts of Psidium cattleyanum Sabine in plant bioassays. Braz. J. Biol., 84(1), e260985. doi: 10.1590/1519-6984.260985. DOI: https://doi.org/10.1590/1519-6984.260985

Amorim, J. et al. (2019). The ethanolic extract from Erythrina mulungu Benth. flowers attenuate allergic airway inflammation and hyperresponsiveness in a murine model of asthma. J. Ethnopharmacol., 242(1), e111467. doi: 10.1016/j.jep.2018.08.009. DOI: https://doi.org/10.1016/j.jep.2018.08.009

Baratelli, T. G. et al. (2012). Phytochemical and allelopathic studies of Terminalia catappa L. (Combretaceae). Biochem. Syst. Ecol., 41(1), 119-125. doi: 10.1016/j.bse.2011.12.008. DOI: https://doi.org/10.1016/j.bse.2011.12.008

Bedane, K. G. et al. (2016). Flavanones of Erythrina livingstoniana with antioxidant properties. Fitoterapia, 108(1), 48-54. doi: 10.1016/j.fitote.2015.11.014. DOI: https://doi.org/10.1016/j.fitote.2015.11.014

Bertoldi, C., Leo, M., Braca, A., & Ercoli, L. (2009). Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology, 19(3),169-176. doi:10.1007/s00049.009.0019-5. DOI: https://doi.org/10.1007/s00049-009-0019-5

Bhagyasri, G. et al. (2017). Analgesic and anti-inflammatory activity of leaf extracts of Erythrina variegate. Indo Am. J. Pharm. Res., 7(9), 681-692. doi: 10.5281/zenodo.1036569.

Chacha, M., Bojase-Moleta, G., & Majinda, R. R. (2005). Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima. Phytochemistry, 66(1), 99-104. doi: 10.1016/j.phytochem.2004.10.013. DOI: https://doi.org/10.1016/j.phytochem.2004.10.013

Chacon, D.S. et al. (2022). Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. Front. Plant Sci., 13(1), e947558. doi: 10.3389/fpls.2022.947558 DOI: https://doi.org/10.3389/fpls.2022.947558

Chatatikun, M., & Chiabchalard, A. (2013). Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts. J. Chem. Pharm. Res., 5(4), 97-102.

Cui, L. et al. (2010). New prenylated flavanones from Erythrina abyssinica with Protein Tyrosine Phosphatase 1B (PTP1B) inhibitory activity. Planta Med., 76(7), 713-718. doi: 10.1055/s-0029.124.0682. DOI: https://doi.org/10.1055/s-0029-1240682

Diaz, N. G. N., & Palacios, S. M. (2013). Phytotoxicity of secondary metabolites isolated from Flourensia oolepis. Chem. Biodivers., 10(7), 1295-1304. doi: 10.1002/cbdv.201200204. DOI: https://doi.org/10.1002/cbdv.201200204

Djiogue, S. et al. (2009). Isoflavonoids from Erythrina poeppigiana: evaluation of their binding affinity for the estrogen receptor. J. Nat. Prod. 72(9),1603-1607. doi: 10.1021/np900271m. DOI: https://doi.org/10.1021/np900271m

Dkhil, M. A. et al. (2021). Medicinal plants as a fight against murine blood-stage malaria. Saudi J. Biol. Sci. 28(3), 1723-1738. doi: 10.1016/j.sjbs.2020.12.014. DOI: https://doi.org/10.1016/j.sjbs.2020.12.014

El-Masry, S. et al. (2010). Flavone glycosides from Erythrina caffra. Planta Med., 16(4), 217-222. doi: 10.1055/s-0030.125.1826. DOI: https://doi.org/10.1055/s-0030-1251826

Fahmy, N. M. et al. (2018). Comprehensive review on flavonoids biological activities of Erythrina plant species. Ind. Crops Prod., 123(1), 500-538. doi: 10.1016/j.indcrop.2018.06.028. DOI: https://doi.org/10.1016/j.indcrop.2018.06.028

Gabr, S. K. et al. (2019). Antioxidant activity and molecular docking study of Erythrina neillii polyphenolics. S. Afr. J. Bot. 121(1), 470-477. doi: 10.1016/j.sajb.2018.12.011. DOI: https://doi.org/10.1016/j.sajb.2018.12.011

Ganbaatar, C. et al. (2015). Flavonoid glycosides from the aerial parts of Polygonatum odoratum (Mill.) druce growing in Mongolia. Op. Nat. Prod. J., 8(1),1-7. DOI: https://doi.org/10.2174/1874848101508010001

García-Mateos, R., Peña-Valdivia, C. B., & Soto-Hernández, M. (2022). Phytotoxicity of crude alkaloid fractions from Erythrina americana. Rev. Soc. Quim. Mex., 46(1):4-9.

Garín-Aguilar, M. E. et al. (2000). Effect of crude extracts of Erythrina americana Mill. on aggressive behavior in rats. J Ethnopharmacol., 69(2),189-196. doi: 10.1016/s0378-8741(99)00121-x. DOI: https://doi.org/10.1016/S0378-8741(99)00121-X

Gilbert, B., & Favoreto, R. (2012). Erythrina sp. Fabaceae (Leguminosae, Faboideae). Fitos, 7(3), 185-197. DOI: https://doi.org/10.32712/2446-4775.2012.152

Gris, D. et al. (2019). Secondary metabolites that could contribute to the monodominance of Erythrina fusca in the Brazilian Pantanal. DOI: https://doi.org/10.1007/s10646-019-02133-y

Ecotoxicology, 28(10), 1232-1240. doi: 10.1007/s10646.019.02133-y.

Heim, K. E., Tagliaferro, A. R., & Bobylia, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure activity relationships. J.

Nutr. Biochem. 13(10), 572-584. doi: 10.1016/S0955-2863(02)00208-5. DOI: https://doi.org/10.1016/S0955-2863(02)00208-5

Hikita, K. et al. (2015). Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells DOI: https://doi.org/10.1177/1934578X1501000924

through Inhibition of Glyoxalase I. Nat Prod Commun. 10(9),1581-1584.

Hooper, A. M. et al. (2010). Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry, 71(8-9), 904-908. doi: 10.1016/j.phytochem.2010.02.015. DOI: https://doi.org/10.1016/j.phytochem.2010.02.015

Imatomi, M. et al. (2013). Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem. Syst. and Ecol. 46(1), 29-35. doi: 10.1016/j.bse.2012.09.005. DOI: https://doi.org/10.1016/j.bse.2012.09.005

Juma, B., & Majinda, R.R. (2006). Constituents of Erythrina lysistemon: their brine shrimp lethality, antimicrobial and radical scavenging activities. Nat. Prod. Commun. 1(2),101-107. doi: 10.1177/1934578X060.010.0204. DOI: https://doi.org/10.1177/1934578X0600100204

Kenny, O. et al. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem., 141(4), 4295-302. doi: 10.1016/j.foodchem.2013.07.016. DOI: https://doi.org/10.1016/j.foodchem.2013.07.016

Koch, K. et al. (2019). Abyssinone V, a prenylated flavonoid isolated from the stem bark of Erythrina melanacantha increases oxidative stress and decreases stress resistance in Caenorhabditis elegans. J. Pharm. Pharmacol., 71(6),1007-1016. doi: 10.1111/jphp.13074. DOI: https://doi.org/10.1111/jphp.13074

Krenn, L., Unterrieder, I., & Ruprechter, R. (2002). Quantification of isoflavones in red clover by high-performance liquid chromatography. J. Chromatogr. B, 777(1), 123-128. doi: 10.1016/s1570-0232(02)00079-x. DOI: https://doi.org/10.1016/S1570-0232(02)00079-X

Lollato, G., Scarminio, I. S., & Moreira, E. G. (2010). Behavioral effects of aqueous and dichloromethane extracts of Erythrina speciosa Andrews, Fabaceae, leaves in mice. Braz J Pharmacog., 20(6), 939-944. doi: 10.1590/S0102-695X201.000.5000048. DOI: https://doi.org/10.1590/S0102-695X2010005000048

Martins, J., & Brijesh, S. (2020). Anti-depressant activity of Erythrina variegata bark extract and regulation of monoamine oxidase activities in mice. J. Ethnopharmacol., 248(1), e112280. doi: 10.1016/j.jep.2019.112280. DOI: https://doi.org/10.1016/j.jep.2019.112280

Martins, M. V. (2020). Erythrina in Flora do Brasil [Reflora]. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22965.

Martins, M. V., & Tozzi, A. M. G. A. (2018). Nomenclatural and taxonomic changes in Brazillian Erythrina (Leguminosae, Papilionoideae, Phaseoleae). J. Torrey Bot. Soc., 145(4), 398-402. DOI: https://doi.org/10.3159/TORREY-D-18-00003.1

Merino, F. J. Z. et al. (2018). A study of the phytotoxic effects of the aerial parts of Senecio westermanii Dusén (Asteraceae) on Lactuca sativa L. and Allium cepa L. seeds. Braz. J. Pharm. Sci. 54(3), e17135. doi: 10.1590/s2175.979.0201800.031.7135. DOI: https://doi.org/10.1590/s2175-97902018000317135

Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19 (10),16240-16265. doi:10.3390/molecules191016240. DOI: https://doi.org/10.3390/molecules191016240

Mishra, K., Ojha, H., & Chaudhury, N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem., 130(4), 1036-1043. doi: 10.1016/j.foodchem.2011.07.127. DOI: https://doi.org/10.1016/j.foodchem.2011.07.127

Moalin, M. et al. (2011). A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 16(11), 9636-9650. doi: 10.3390/molecules16119636. DOI: https://doi.org/10.3390/molecules16119636

Mohanta, Y. et al. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci., 17(4), 14-21. doi: 10.3389/fmolb.2017.00014. DOI: https://doi.org/10.3389/fmolb.2017.00014

Nakamura, C. et al. (2021). High sensitivity of roots to salt stress as revealed by novel tip bioassay in wheat seedlings. Biotechnol. Biotechnol. Equip., 35(1), 238-246. doi: 10.1080/13102.818.2020.1852890. DOI: https://doi.org/10.1080/13102818.2020.1852890

Nakanishi, K. (1982). Recent studies on bioactive compounds from plants. J. Nat. Prod., 45(1), 15-26. doi: 10.1021/np50019a002. DOI: https://doi.org/10.1021/np50019a002

Nebo, L. et al. (2014). Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and

Meliaceae families. Phytochem. Lett. 8(1), 226-232. doi: 10.1016/j.phytol.2014.02.010. DOI: https://doi.org/10.1016/j.phytol.2014.02.010

Nguyen, P.H. et al. (2010). Prenylated pterocarpans as bacterial neuraminidase inhibitors. Bioorg. Med. Chem., 18(9), 3335-3344. doi: 10.1016/j.bmc.2010.03.005. DOI: https://doi.org/10.1016/j.bmc.2010.03.005

Nguyen, P. H. et al. (2012). New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorg. Med. Chem., 20(21), 6459-6464. doi: 10.1016/j.bmc.2012.08.024. DOI: https://doi.org/10.1016/j.bmc.2012.08.024

Nkengfack, A. E. et al. (1997). Phenolic metabolites from Erythrina species. Phytochemistry, 46(3), 573-578. doi: 10.1016/s0031-9422(97)00291-4. DOI: https://doi.org/10.1016/S0031-9422(97)00291-4

Nkengfack, A. E. et al. (2001). Cytotoxic isoflavones from Erythrina indica. Phytochemistry, 58(1), 1113-1120. doi: 10.1016/s0031-9422(01)00368-5. DOI: https://doi.org/10.1016/S0031-9422(01)00368-5

Nyandoro, S. S. et al. (2017). Flavonoids from Erythrina schliebenii. J. Nat. Prod. 80(2), 377-383. doi: 10.1021/acs.jnatprod.6b00839. DOI: https://doi.org/10.1021/acs.jnatprod.6b00839

Ogunsanya, H. Y. et al. (2022). Belgian endive-derived biostimulants promote shoot and root growth in vitro. Sci. Rep., (12)1, 8792-8801. doi: 10.1038/s41598.022.12815-z. DOI: https://doi.org/10.1038/s41598-022-12815-z

Oliveira, D. R. et al. (2014). Flavones from Erythrina falcata are modulators of fear memory. BMC Complement. Altern. Med., 14(1), 288-292. doi: 10.1186/1472-6882-14-288. DOI: https://doi.org/10.1186/1472-6882-14-288

Oliveira, M. S. G. (2009). Estudo fitoquímico e avaliação antinociceptiva e anti-inflamatória de Erythrina mulungu (Fabaceae). [Dissertação Mestrado em Química, Universidade Federal de Alagoas]. Repositório Institucional da UFAL. https://www.repositorio.ufal.br/handle/riufal/1081

Passreiter, C. M. et al. (2015). Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry, 117(1), 237-244. doi: 10.1016/j.phytochem.2015.04.002. DOI: https://doi.org/10.1016/j.phytochem.2015.04.002

Pillay, C. C. N. et al. (2001). Cyclooxygenase inhibiting and anti-bacterial activities of South African Erythrina species. J. Ethnopharmacol., 74(1), 231-237. doi: 10.1016/s0378-8741(00)00366-4. DOI: https://doi.org/10.1016/S0378-8741(00)00366-4

Pinto, G. F. S., Roma, L. P., & Kolb, R. M. (2023). Phytotoxicity of organic extracts of five medicinal plants of the neotropical savana. Braz. J. Biol., 83(1), e270122. doi: 10.1590/1519-6984.270122. DOI: https://doi.org/10.1590/1519-6984.270122

Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. DOI: https://doi.org/10.1016/j.fitote.2011.01.018

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free

Radic. Biol. Med., 20(7), 933-956. doi: 10.1016/0891-5849(95)02227-9. DOI: https://doi.org/10.1016/0891-5849(95)02227-9

Rosa, D. S. et al. (2012). Erysothrine, an alkaloid extracted from flowers of Erythrina mulungu Mart. ex Benth: evaluating its anticonvulsant and anxiolytic potential. Epilepsy Behav., 23(3), 205-212. doi: 10.1016/j.yebeh.2012.01.003. DOI: https://doi.org/10.1016/j.yebeh.2012.01.003

Rukachaisirikul, T., Chokchaisiri, S., & Suksamram, A. (2014). Chemical constituents of the roots of Erythrina subumbrans. Chem. Nat. Comp., 49(6), 968-969. doi: 10.1007/s10600.014.0838-7. DOI: https://doi.org/10.1007/s10600-014-0838-7

Sadgrove, N. J. et al. (2020). Antimicrobial Isoflavones and Derivatives from Erythrina (Fabaceae): Structure Activity Perspective (Sar & Qsar) on Experimental and Mined Values Against Staphylococcus aureus. Antibiotics (Basel). 9(5), 223-229. doi: 10.3390/antibiotics9050223. DOI: https://doi.org/10.3390/antibiotics9050223

Sakat, S., & Juvekar, A. (2010). Comparative study of Erythrina indica Lam. (Fabaceae) leaves extracts for antioxidant activity. J. Young Pharm., 2(1), 63-67. doi: 10.4103/0975-1483.62216. DOI: https://doi.org/10.4103/0975-1483.62216

Santos, A. E. et al. (2014). Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit. Vectors, 28(7), 130-139. doi: 10.1186/1756-3305-7-130. DOI: https://doi.org/10.1186/1756-3305-7-130

Santos, W. P. et al. (2012). In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts. Pharm. Biol., 50(7), 919-24. doi: 10.3109/13880.209.2011.649429. DOI: https://doi.org/10.3109/13880209.2011.649429

Shajib, M. T. et al. (2012). Phytotoxic effect, uptake, and transformation of biochanin A in selected weed species. J. Agric. Food Chem., 60(43), 10715-10722. doi: 10.1021/jf3023589. DOI: https://doi.org/10.1021/jf3023589

Silva, M. M. et al. (2002). Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic. Res., 36(11), 1219-27. doi: 10.1080/198.107.1576021.000.016472. DOI: https://doi.org/10.1080/198-1071576021000016472

Soares, G. L. G. et al. (2012). Potencial alelopático do extrato aquoso de folhas de algumas leguminosas arbóreas brasileiras. Floresta e Ambiente, 9(1), 119-126.

Tanaka, H., Tanaka, T., & Etoh, H. (1998). Two pterocarpans from Erythrina orientalis. Phytochemistry, 47(3), 475-477. DOI: https://doi.org/10.1016/S0031-9422(97)00596-7

Tanaka, H. et al. (2001). Erysubins C-F, four isoflavonoids from Erythrina suberosa var. glabrescences. Phytochemistry, 56(1), 769-773. doi: 10.1016/s0031-9422(00)00441-6. DOI: https://doi.org/10.1016/S0031-9422(00)00441-6

Tauseef, S. et al. (2013). In vitro antioxidant analysis of five medicinally important plants. J. Pharmacogn. Phytochem., 2(4),183-188.

Thongmee, P., & Itharat, A. (2016). Anti-inflammatory activities of Erythrina variegata bark ethanolic extract. J. Med. Assoc. Thai., 99(4), 166-171.

Tigre, R. C. et al. (2012). Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicol. Environ. Saf., 84(1), 125-132. doi: 10.1016/j.ecoenv.2012.06.026. DOI: https://doi.org/10.1016/j.ecoenv.2012.06.026

Tuenter, E. et al. (2019). Antiplasmodial prenylated flavonoids from stem bark of Erythrina latissima. Phytochem. Lett., 30(1), 169-172. doi: 10.1016/J.PHYTOL.2019.02.001. DOI: https://doi.org/10.1016/j.phytol.2019.02.001

Vasconcelos, S. M. L. et al. (2007). Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Quim. Nova, 30(5), 1323-1338. doi: 10.1590/S0100.404.2200700.050.0046. DOI: https://doi.org/10.1590/S0100-40422007000500046

Viana, A. R. et al. (2023). Phytochemical and biological characterization of aqueous extract of Vassobia breviflora on proliferation and viability of melanoma cells: involvement of purinergic pathway. J. Toxicol. Environ. Health A., 86(17), 632-652. DOI: 10.1080/15287.394.2023.2233989. DOI: https://doi.org/10.1080/15287394.2023.2233989

Viana, A. R. et al. (2022). Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract. J. Toxicol. Environ. Health A., 86(3), 51-68. DOI: 10.1080/15287.394.2022.2156956. DOI: https://doi.org/10.1080/15287394.2022.2156956

Viana, A. R. et al. (2022a). Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. J. Toxicol. Environ. Health A., 85(23), 972-987. doi: 10.1080/15287.394.2022.2130844. DOI: https://doi.org/10.1080/15287394.2022.2130844

Waffo, A. F. K. et al. (2006). Flavones and isoflavones from the west African Fabaceae Erythrina vogelii. Phytochemistry, 67(5), 459-463. DOI: https://doi.org/10.1016/j.phytochem.2005.09.022

Wang, X. et al. (2020). Flavonoids and antioxidant activity of rare and endangered fern: Isoetes sinensis. PLoS One, 15(5), e0232185. doi: 10.1371/journal.pone.0232185. DOI: https://doi.org/10.1371/journal.pone.0232185

Watjen, W. et al. (2008). Prenylated flavonoid derivatives from the bark of Erythrina addisoniae. J. Nat. Prod., 71(1), 735-738. doi: 10.1021/np070417j. DOI: https://doi.org/10.1021/np070417j

Weston, L.A., Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol. 39(2), 283-297. doi: 10.1007/s10886.013.0248-5. DOI: https://doi.org/10.1007/s10886-013-0248-5

Wintola, O. A. et al. (2021). Chemical composition, antioxidant, activities and antibacterial acitivities of essential oil from Erythrina caffra growing in South Africa. Heliyon, 7(6), e07244. doi: 10.1016/j.heliyon.2021.e07244. DOI: https://doi.org/10.1016/j.heliyon.2021.e07244

Yenesew, A. et al. (2012). The antiplasmodial and radical scavenging activities of flavonoids of Erythrina burttii. Acta Trop., 123(2), 123-127. doi: 10.1016/j.actatropica.2012.04.011. DOI: https://doi.org/10.1016/j.actatropica.2012.04.011

Yu, D. et al. (2000). Studies on chemical constituents of Erythrina arborescens. Zhongguo Zhongyao Zazhi, 25(6), 353-355.

Downloads

Published

2024-10-17

How to Cite

Santos, A. E. dos, Simas, N. K., & Kuster, R. M. (2024). Phytochemical profiling, antioxidant, and phytotoxic potentials of Erythrina speciosa Andrews leaves. Ciência E Natura, 46, e86537. https://doi.org/10.5902/2179460X86537