Chemical study and investigation of the larvicidal activity of metabolites produced by the endophytic fungus Colletotrichum siamense

Authors

DOI:

https://doi.org/10.5902/2179460X86053

Keywords:

Colletotrichum siamense, Molecular networking, Cytochalasin

Abstract

Microorganisms can produce a wide range of secondary metabolites with different activities, including larvicidal activities. Colletotrichum is a widespread fungal genus worldwide, and some species of this genus can establish mutualistic interactions with plants. In this study, the endophytic fungus Colletotrichum siamense was isolated from the hemiparasitic plant Passovia stelis to evaluate the chemical profile of the microorganism and its larvicidal activity against Aedes aegypti. This mosquito is one of the main transmitters of arboviruses, and the use of synthetic insecticides to fight the mosquito has generated resistance in its populations. For the larvicidal tests, the organic extract of fungal metabolites was obtained by partitioning with ethyl acetate after the cultivation of C. siamese in potato dextrose broth. The assay results indicated that the C. Siamese extract was active against Ae. aegypti, with an LC50 of 248 µg/mL for a 72-hour treatment. The extract was then subjected to chemical dereplication using the Global Natural Products Social Molecular Networking (GNPS) platform. The metabolites culmorin and cytochalasin D were found in the extract, the latter of which is representative of a biosynthetic class with previously reported activities against Aedes aegypti larvae.

Downloads

Download data is not yet available.

Author Biographies

Orivaldo Teixeira de Menezes Júnior, Universidade Federal do Amazonas

Master's degree in Science and Technology for Amazonian Resources from the Federal University of Amazonas (UFAM).

Lívia Soman de Mendeiros, Universidade Federal de São Paulo

PhD in Organic Chemistry from the Federal University of São Carlos.

Ricardo Aparecido Rodrigues Neponuceno, Universidade Federal de Rondonópolis

Master's degree in Environmental Management and Technologies from the Federal University of Mato Grosso (UFMT).

Antonia Queiroz Lima de Souza, Universidade Federal do Amazonas

PhD in Biological Sciences from the Federal University of São Carlos.

Helder Lopes Teles, Universidade Federal de Rondonópolis

PhD in Chemistry from the Chemistry Institute of Araraquara-UNESP.

Camila Martins de Oliveira, Universidade Federal de Rondonópolis

Post-doctorate in Chemistry from the University of São Paulo.

References

Araújo, I. F., Marinho, V. H. S., Sena, I. S., Curti, J. M., Ramos, R. S., Ferreira, R. M. A., Souto, R. N. P., & Ferreira, I. M. (2022). Larvicidal activity against Aedes aegypti and molecular docking studies of compounds extracted from the endophytic fungus Aspergillus sp. isolated from Bertholletia excelsa Humn. & Bonpl. Biotechnology Letters, 44, 439–459.

Aron, A. T., Gentry, E. C., McPhail, K. L., Nothias, L., Nothias Esposito, M., Bouslimani, A., Petras, D., Gauglitz, J. M., Sikora, N., Vargas, F., van der Hooft, J. J. J., Ernst, M., Kang, K. B., Aceves, C. M., Caraballo Rodríguez, A. M., Koester, I., Weldon, K. C., Bertrand, S., Roullier, C., Sun, K., Tehan, R. M., Boya P, C. A., Christian, M. H., Gutiérrez, M., Ulloa, A. M., Mora, J. A. T., Mojica Flores, R., Lakey Beitia, J., Vásquez Chaves, V., Zhang, Y., Calderón, A. I., Tayler, N., Keyzers, R. A., Tugizimana, F., Ndlovu, N., Aksenov, A. A., Jarmusch, A. K., Schmid, R., Truman, A. W., Bandeira, N., Wang, M., & Dorrestein, P. C. (2020). Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 15, 1954–1991.

Arruda, R., Fadini, R. F., Carvalho, L. N., Del Claro, K., Mourão, F. A., Jacobi, C. M., Teodoro, G. S., van den Berg, E., Caires, C. S., & Dettke, G. A. (2012). Ecology of neotropical mistletoes: An important canopy dwelling component of Brazilian ecosystems. Acta Botanica Brasilica, 26(2), 264–274.

Barbero, M., Artuso, E., & Prandi, C. (2018). Fungal anticancer metabolites: Synthesis toward drug discovery. Current Medicinal Chemistry, 25(2), 141–185.

Barabadi, H., Alizadeh, Z., Rahimi, M. T., Barac, A., Maraolo, A. E., Robertson, L. J., Masjedi, A., Shahrivar, F., & Ahmadpour, E. (2019). Nanobiotechnology as an emerging approach to combat malaria: A systematic review. Nanomedicine, 18, 221–233.

Banerjee, D. (2011). Endophytic fungal diversity in tropical and subtropical plants. Journal of Microbiology, 6(1), 54–62.

Gruber Dorninger, C., Novak, B., Nagl, V., & Berthiller, F. (2016). Emerging mycotoxins: Beyond traditionally determined food contaminants. Journal of Agricultural and Food Chemistry, 65, 7052–7070.

Garcia, A. C. G., Menezes Júnior, O. T., Mariano, L. A., Santiago, L. C., Araújo, Â. R., Monfardini, J. D., Simões, R. C., Oliveira, A. C., Roque, R. A., Tadei, W. P., Teles, H. L., & Oliveira, C. M. (2022). Endophytic fungus Phomopsis sp. as a source of 3 nitropropionic acid with larvicidal activity against Aedes aegypti (Linnaeus 1762, Diptera: Culicidae). Journal of the Brazilian Society of Tropical Medicine, 55, 1–4.

Knakiewicz, A. C., Lutinski, J. A., Busato, M. A., Roman Junior, W. A., & Simões, D. A. (2020). Larvicidal activity of aqueous extracts of Ilex paraguariensis and Ilex theezans on Aedes aegypti (L.). Ciência e Natura, 42, 1–13.

Kim, J. W., & Shim, S. H. (2019). The fungus Colletotrichum as a source for bioactive secondary metabolites. Archives of Pharmacal Research, 42, 735–753.

Li, S., Zhang, X., Wang, X., & Zhao, C. (2018). Novel natural compounds from endophytic fungi with anticancer activity. European Journal of Medicinal Chemistry, 156, 316–343.

Ma, X., Nontachaiyapoom, S., Jayawardena, S. R., Yde, K. D., Gentekaki, E., Zhou, S., Qian, Y., Wen, T., & Kang, J. (2018). Endophytic Colletotrichum species from Dendrobium spp. in China and Northern Thailand. MycoKeys, 43, 23–57.

Maier, W., Hammer, K., Dammann, U., Schulz, B., & Strack, D. (1997). Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta, 202(1), 36–42.

Masi, M., Cimmino, A., Tabanca, N., Becnel, J. J., Bloomquist, J. R., & Evidente, A. (2017). A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. Open Chemistry, 15, 156–166.

Munasinghe, V., Kumar, N. S., Jayasinghe, L., & Fujimoto, Y. (2017). Indole 3 acetic acid production by Colletotrichum siamense, an endophytic fungus from Piper nigrum leaves. Journal of Biologically Active Products from Nature, 7(6), 475–479.

Orlandelli, R. C., Alberto, R. N., Rubin Filho, C. J., & Pamphile, J. A. (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genetics and Molecular Research, 11(2), 1575–1585.

Pilz Junior, H. L., Lemos, A. B., Almeida, K. N., Corção, G., Schrekker, H. S., Silva, C. E., & Silva, O. S. (2019). Microbiota potentialized larvicidal action of imidazolium salts against Aedes aegypti (Diptera: Culicidae). Scientific Reports, 9(1), 1–8.

Pilon, A. C., Grande, M. D., Silvério, M. R. S., Silva, R. R., Albernaz, L. C., Vieira, P. C., Lopes, J. L. C., Espindola, L, S., & Lopes, N. P. (2022). Combination of GC–MS molecular networking and larvicidal effect against Aedes aegypti for the discovery of bioactive substances in commercial essential oils. Molecules, 27(5), 1–17.

Segaran, G., & Sathiavelu, M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology, 21, 1–17.

Vieira, W. A. S., Michereff, S. J., Morais Jr, M. A., Hyde, K. D., & Câmara, M. P. S. (2014). Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity, 67, 181–202.

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval Calderón, M., Kersten, R. D., Pace, L. A., Quinn, R. A., Duncan, K. R. & Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., Kersten, R. D., Pace, L. A., Quinn, R. A., Duncan, K. R., Hsu, C. C., Floros, D. J., Gavilan, R. G., Kleigrewe, K., Northen, T., Dutton, R. J., Parrot, D., Carlson, E. E., Aigle, B., Michelsen, C. F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B. T., Gerwick, L., Liaw, C.-C., Yang, Y.-L., Humpf, H.-U., Maansson, M., Keyzers, R. A., Sims, A. C., Johnson, A. R., Sidebottom, A. M., Sedio, B. E., Klitgaard, A., Larson, C. B., Boya P, C. A., Torres-Mendoza, D., Gonzalez, D. J., Silva, D. B., Marques, L. M., Demarque, D. P., Pociute, E., O’Neill, E. C., Briand, E., Helfrich, E. J. N., Granatosky, E. A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J. J., Zeng, Y., Vorholt, J. A., Kurita, K. L., Charusanti, P., McPhail, K. L., Nielsen, K. F., Vuong, L., Elfeki, M., Traxler, M. F., Engene, N., Koyama, N., Vining, O. B., Baric, R., Silva, R. R., Mascuch, S. J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P. G., Dai, J., Neupane, R., Gurr, J., Rodríguez, A. M. C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B. M., Almaliti, J., Allard, P.-M., Phapale, P., Nothias, L.-F., Alexandrov, T., Litaudon, M., Wolfender, J.-L., Kyle, J. E., Metz, T. O., Peryea, T., Nguyen, D.-T., VanLeer, D., Shinn, P., Jadhav, A., Müller, R., Waters, K. M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P. R., Palsson, B. Ø., Pogliano, K., Linington, R. G., Gutiérrez, M., Lopes, N. P., Gerwick, W. H., Moore, B. S., Dorrestein, P. C., & Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.

Wang, Z., Perumalsamy, H., Wang, X., & Ahn, Y. (2019). Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Scientific Reports, 9(411), 1–19.

World Health Organization. (2013). Guidelines for efficacy testing of spatial repellents.

Downloads

Published

2025-11-07

How to Cite

Menezes Júnior, O. T. de, Mendeiros, L. S. de, Neponuceno, R. A. R., Souza, A. Q. L. de, Teles, H. L., & Oliveira, C. M. de. (2025). Chemical study and investigation of the larvicidal activity of metabolites produced by the endophytic fungus Colletotrichum siamense. Ciência E Natura, 47. https://doi.org/10.5902/2179460X86053