O silício e o selênio mitigam a toxicidade do alumínio em Pfaffia glomerata (Spreng.) Pedersen?
DOI:
https://doi.org/10.5902/2179460X85995Palavras-chave:
Enzimas antioxidantes, Elementos benéficos, Plantas medicinais, Metais tóxicosResumo
O uso de plantas medicinais é uma alternativa comum à população. No entanto, muitas dessas plantas crescem em solos tropicais e subtropicais ao redor do mundo contaminados com metais tóxicos como o alumínio (Al). O acúmulo excessivo de Al nos tecidos vegetais pode entrar na cadeia alimentar de animais e humanos causando danos irreversíveis. Uma estratégia possível é utilizar elementos capazes de mitigar a absorção ou os efeitos de metais tóxicos. Assim, este estudo teve como objetivo avaliar se o silicone (Si) e o selênio (Se) mitigam a toxicidade do Al sobre variáveis morfológicas e bioquímicas de Pfaffia glomerata. As plantas foram submetidas às seguintes combinações de Al, Si e Se: 1) Controle; 2) Al 1,85 mM; 3) Si 1,5 mM; 4) Al 1,85 mM + Si 1,5 mM; 5) Se 0,002 mM; 6) Al 1,85 mM + Se 0,002 mM. O delineamento experimental foi inteiramente casualizado com quatro repetições. Ao final do período de exposição aos tratamentos foram analisadas as variáveis morfológicas (massa seca da parte aérea e das raízes, área foliar e morfologia das raízes) e bioquímicas (pigmentos fotossintéticos, teor de peróxido de hidrogênio, peroxidação lipídica e guaiacol peroxidase (POD) e atividade da superóxido dismutase (SOD) em plantas). A toxicidade do alumínio afetou o crescimento de P. glomerata e apenas o Si foi capaz de reverter a ação tóxica do Al, principalmente em períodos mais curtos de exposição. No entanto, o Se não mostrou potencial para inibir significativamente os efeitos tóxicos do Al.
Downloads
Referências
Bernardy, K., Farias, J.G., Pereira, A.S., Dorneles, A.O.S., Bernardy, D., Tabaldi, L.A., Neves, V.M., Dressler, V.L. & Nicoloso, F.T. (2020). Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions. Chemosphere 253: 01-11. DOI: https://doi.org/10.1016/j.chemosphere.2020.126692
Bose, J., Babourina, O., Ma, Y., Zhou, M., Shabala, S. & Rengel, Z. (2015). Specificity of Ion Uptake and Homeostasis Maintenance During Acid and Aluminium Stresses. In: Panda, S., Baluška, F. (eds) Aluminum Stress Adaptation in Plants. Signaling and Communication in Plants, 24. DOI: https://doi.org/10.1007/978-3-319-19968-9_12
Cai, J.-G., Luo, L.-M., Tang, H. & Zhou, L. (2018). Cytotoxicity of Malondialdehyde and Cytoprotective Effects of Taurine via Oxidative Stress and PGC-1α Signal Pathway in C2C12 Cells. Molecular Biology 52: 532-542. DOI: https://doi.org/10.1134/S0026893318040040
Casaroli, D. & Van Lier, Q.J. (2008). Critérios para determinação da capacidade de vaso. [Criteria for determining vessel capacity]. Revista Brasileira de Ciência do Solo 32:59-66. DOI: https://doi.org/10.1590/S0100-06832008000100007
Chen, Y.G., He, X.L.S., Huang, J.H., Luo, R., Ge, H.Z., Wołowicz, A. & Chen, S.H. (2021). Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicology and Environmental Safety 219: 01-17. DOI: https://doi.org/10.1016/j.ecoenv.2021.112336
Cunha Neto, A.R., Ambrósio, A.S., Wolowski, M., Westin, T.B., Govêa, K.P., Carvalho, M. & Barbosa, S. (2020). Negative effects on photosynthesis and chloroplast pigments exposed to lead and aluminum: a meta-analysis. Cerne 26: 232-237. DOI: https://doi.org/10.1590/01047760202026022711
Dorneles, A.O.S., Pereira, A.S., Rossato, L.V., Possebom, G., Sasso, V.M., Bernardy, K., Sandri, R.Q., Nicoloso, F.T., Ferreira, P.A.A. & Tabaldi, L.A. (2016). Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Ciência Rural 46: 506-512. DOI: https://doi.org/10.1590/0103-8478cr20150585
Dorneles, A.O.D., Pereira, P.S., Sasso, V.M., Possebom, G., Tarouco, C.P., Schor, M.R.W., Rossato, L., Ferreira, P.A.A. & Tabaldi, L.A. (2019). Aluminum stress tolerance in potato genotypes grown with silicon. Bragantia 78: 12-25. DOI: https://doi.org/10.1590/1678-4499.2018007
Du, H., Huang, Y., Qu, M., Li, Y., Hu, X., Yang, W., Li, H., He, W., Ding, J., Liu C., Gao, S., Cao, M., Lu, Y. & Zhang, S. (2020). A Maize ZmAT6 Gene Confers Aluminum Tolerance via Reactive Oxygen Species Scavenging. Frontiers in Plant Science 11: 01-12. DOI: https://doi.org/10.3389/fpls.2020.01016
El-Moshaty, F.I.B., Pike, S.M., Novacky, A.J. & Sehgal, O.P. (1993). Lipid peroxidation and superoxide productions in cowpea (Vigna unguicultata) leaves infected with tobacco rings virus or southern bean mosaic virus. Journal Physiological and Molecular Plant Pathology 43: 109-119. DOI: https://doi.org/10.1006/pmpp.1993.1044
Ferreira, D.F. (2019). SISVAR: A computer analysis system to fixed effects Split plot type designs. Revista Brasileira de Biometria 37: 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450
Giannopolitis, C. N. & Ries, S. K. (1977). Purification and quantitative relationship with water-soluble protein in seedlings. Journal of Plant Physiology 48: 315-318. DOI: https://doi.org/10.1104/pp.59.2.315
Hiscox, J. D. & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57:1332-1334. DOI: https://doi.org/10.1139/b79-163
Hoagland, D. R. & Arnon, D. I. The waterculture method for growing plants without soil. Berkeley, CA: Agric. Exp. Stn., Univ. Of California. (Circ. 347). 1950.
Huang, H., Li, M., Rizwan, M., Dai, Z., Yuan, Y., Hossain, M.M., Cao, M., Xiong, S. & Tu, S. (2020). Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. Journal of Hazardous Materials 401: 01-11. DOI: https://doi.org/10.1016/j.jhazmat.2020.123393
Jesus, L.R., Batista, B.L. & Lobato, A.K.S. (2017). Silicon reduces aluminum accumulation and mitigates toxic effects in cowpea plants. Acta Physiologiae Plantarum 39: 138-145. DOI: https://doi.org/10.1007/s11738-017-2435-4
Kim, Y.H., Khan, A. L., Waqas, M. & Lee, I. (2017). Silicon regulates antioxidant activities of crop plants under abiotic- induced oxidative stress: a review. Frontiers in Plant Science 8: 01-07. DOI: https://doi.org/10.3389/fpls.2017.00510
Kovács, S., Kutasy, E. & Csajbók, J. (2022). The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants 11: 01-22. DOI: https://doi.org/10.3390/plants11091223
Lima, C.C., Gurgel, E.S.G. & Borges, E.E.L. (2021). Antioxidant enzyme activity in germination of Dalbergia spruceana seeds under different temperatures. Journal of Seed Science 43: 01-10. DOI: https://doi.org/10.1590/2317-1545v43244385
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds). Methods in Enzimology, London: Academic Press. 148: 350-381. DOI: https://doi.org/10.1016/0076-6879(87)48036-1
Loreto, F. & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 12:1781-1787. DOI: https://doi.org/10.1104/pp.010497
Luo, L., Wang, B., Jiang, J., Fitzgerald, M., Huang, Q., Yu, Z., Li, H., Zhang, J., Wei, J., Yang, C., Zhang, H., Dong, L. & Chen, S. (2021). Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Frontiers in Pharmacology 11, 01-14. DOI: https://doi.org/10.3389/fphar.2020.595335
Mota, L. H. S., Scalon, S. P. Q., Dresch, D. M. & Silva, C. J. (2020). Emergence and physiological behavior of provenances of pinhão manso in function of level of aluminum. Bioscience Journal 36: 702-712. DOI: https://doi.org/10.14393/BJ-v36n3a2020-41893
Maksimovic, J.D., Mojović, M., Maksimović, V., Römheld, V. & Nikolic, M. (2012). Silicon amelio rates manganes e toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. Journal of Experimental Botany 63: 2411-2420. DOI: https://doi.org/10.1093/jxb/err359
Maldaner, J., Nicoloso, F.T., Tabaldi, L.A., Cargnelutti, D., Skrebsky, E.C., Rauber, R., Goncalves, J.F. & Rossato, L.V. (2015). Aluminum accumulation in two Pfaffia glomerata genotypes and its growth effects. Ciencia Rural 45: 1013-1020. DOI: https://doi.org/10.1590/0103-8478cr20140439
Mello, R. P. (2006). Water consumption of the Asian lily in vase with different substrata (Master’s thesis). Universidade Federal de Santa Maria. https://repositorio.ufsm.br/handle/1/7490.
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Mostofa, M. G., Rahman, M., Ansary, M. U., Keya, S.S., Abdelrahman, M., Miah, G. & Tran, L. P. (2021). Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Critical Reviews in Biotechnology 01-18. DOI: https://doi.org/10.1080/07388551.2021.1892582
Nava, G., Reisser Júnior, C., Parent, L.-É., Brunetto, G., Moura-Bueno, J.M., Navroski, R., Benati, J.A. & Barreto, C.F. (2022). Esmeralda peach (Prunus persica) fruit yield and quality response to nitrogen fertilization. Plants 11: 01-17. DOI: https://doi.org/10.3390/plants11030352
Nicoloso, F.T. (2001). Micropropagação do Ginseng Brasileiro [Pfaffia glomerata (Spreng.) Pedersen]. Revista Brasileira de Plantas Medicinais 03: 11-18.
Parrotta, L., Guerriero, G., Sergeant, K., Cai, G. & Hausman, J. (2015). Target or barrier? The cell wall of early and later diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers Plant Science 6: 01-16. DOI: https://doi.org/10.3389/fpls.2015.00133
Pereira, A.S., Dorneles, A.O.S., Bernardy, K., Sasso, V.M., Bernardy, D., Possebom, G., Rossato, L.V., Dressler, V.L. & Tabaldi, L.A. (2018). Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research 25: 18548-18558. DOI: https://doi.org/10.1007/s11356-018-2005-3
Pontigo, S., Godoy, K., Jiménez, H., Gutiérrez-Moraga, A., Mora, M.L.L. & Cartes P. (2017). Silicon-mediated alleviation of aluminum toxicity by modulation of al/si uptake and antioxidant performance in ryegrass plants. Frontiers in Plant Science 08: 01-15. DOI: https://doi.org/10.3389/fpls.2017.00642
Reis, A.R., Lisboa, L.A.M., Reis, H.P.G., Barcelos, J.P. de Q., Santos, E.F., Santini, J.M.K. & Lavres, J. (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiology and Biochemistry 130: 377-390. DOI: https://doi.org/10.1016/j.plaphy.2018.07.028
Schmitt, O.J., Brunetto, G., Chassot, T., Tiecher, T.L., Marchezan, C., Tarouco, C.P., De Conti, L., Lourenzi, C. R., Nicoloso, F.T., Kreutz, M.A. & Andriolo, J.L. (2020). Impact of Cu concentrations in nutrient solution on growth and physiological and biochemical parameters of beet and cabbage and human health risk assessment. Scientia Horticulturae 272: 01-09. DOI: https://doi.org/10.1016/j.scienta.2020.109558
Shetty, R., Vidya, C. S., Prakash, N. B., Lux, A. & Vaculík, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Science of The Total Environment, 65: 01-11. DOI: https://doi.org/10.1016/j.scitotenv.2020.142744
Shiyab, S. (2019). Morphophysiological effects of chromium in sour orange (Citrus aurantium L.). HORTSCIENCE, 54: 829-834. DOI: https://doi.org/10.21273/HORTSCI13809-18
Singh, V.P., Tripathi, D.K., Kumar, D. & Chauhan, D.K. (2011). Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biological Trace Element Research, 144: 1260-1274. DOI: https://doi.org/10.1007/s12011-011-9118-6
Storck, L., Garcia, D. C., Lopes, S. J. & Estefanel, V. (2016) Experimentação vegetal. [Vegetable experimentation] 3. ed. Santa Maria, RS: Editora da UFSM, 198p
Sun, L., Zhang, M., Liu, X., Mao, Q., Shi, C., Kochian, L. V. & Liao, H. (2020). Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology 62: 984-987. DOI: https://doi.org/10.1111/jipb.12942
Tabaldi, L.A., Cargnelutti, D., Gonçalves, J.F., Pereira, L.B., Castro, G.Y., Maldaner, J., Rauber, R., Rossato, L.V., Bisognin, D.A., Schetinger, M.R.C. & Nicoloso, F.T. (2009). Oxidative stress is an early symptom triggered by aluminum in al sensitive potato plantlets. Chemosphere 761:1402-1409. DOI: https://doi.org/10.1016/j.chemosphere.2009.06.011
Tabaldi, L.A., Nicoloso, F.T., Castro, G.Y., Cargnelutti, D., Gonçalves, J.F., Rauber, R., Skrebsky, E.C., Schetinger, M.R.C., Morsch, V.M. & Bisognin, D.A. (2007). Physiological and oxidative stress responses of four potato clones to aluminum in nutrient solution. Brazilian Journal of Plant Physiology 19: 211-222. DOI: https://doi.org/10.1590/S1677-04202007000300005
Trippe, R.C. & Pilon-Smits, E.A.H. (2021). Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. Journal of Hazardous Materials 404: 124-134. DOI: https://doi.org/10.1016/j.jhazmat.2020.124178
Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. & Guo, S. (2017). Role of Silicon on Plant-Pathogen Interactions. Frontiers in Plant Science 8: 01-14. DOI: https://doi.org/10.3389/fpls.2017.00701
Wei, Y., Han, R., Xie, Y., Jiang, C. & Yu, Y. (2021). Recent advances in understanding mechanisms of plant tolerance and response to aluminum toxicity. Sustainability 13: 01-22. DOI: https://doi.org/10.3390/su13041782
Wu, Z., Liu, S., Zhao, J., Wang, F., Du, Y., Zou, S., Li, H., Wen, D. & Huang, Y. (2017). Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environmental and Experimental Botany 133: 01-11. DOI: https://doi.org/10.1016/j.envexpbot.2016.09.005
Xu, P., Chukhutsina, V. U., Nawrocki, W. J., Schansker, G., Bielczynski, L. W, Lu, Y., Karcher, D., Bock, R. & Croce, R. (2020). Photosynthesis without b-carotene. Elife 01-14. DOI: https://doi.org/10.7554/eLife.58984.sa2
Zeraik, A. E., Souza, F. S. & Fatibello-Filho, O. (2008). Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação [Spot test development to monitor peroxidase activity in purification procedure]. Química Nova 31: 731-734. DOI: https://doi.org/10.1590/S0100-40422008000400003
Zhang, H., Li, Xy., Lin, M., Hu, P., Lai, N., Huang, Z. & Chen, L. (2022). The aluminum distribution and translocation in two citrus species difering in aluminum tolerance. BMC Plant Biology 22: 01-11. DOI: https://doi.org/10.1186/s12870-022-03472-5
Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H. & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports 11: 01-11. DOI: https://doi.org/10.1038/s41598-021-89322-0
Zhu, Y.X. & Gong, H.J. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34: 455-472. DOI: https://doi.org/10.1007/s13593-013-0194-1
Zhu, Z., Wei, G., Li, J., Qian, Q. & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167: 527-533. DOI: https://doi.org/10.1016/j.plantsci.2004.04.020
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência e Natura

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.

