O silício e o selênio mitigam a toxicidade do alumínio em Pfaffia glomerata (Spreng.) Pedersen?

Autores

DOI:

https://doi.org/10.5902/2179460X85995

Palavras-chave:

Enzimas antioxidantes, Elementos benéficos, Plantas medicinais, Metais tóxicos

Resumo

O uso de plantas medicinais é uma alternativa comum à população. No entanto, muitas dessas plantas crescem em solos tropicais e subtropicais ao redor do mundo contaminados com metais tóxicos como o alumínio (Al). O acúmulo excessivo de Al nos tecidos vegetais pode entrar na cadeia alimentar de animais e humanos causando danos irreversíveis. Uma estratégia possível é utilizar elementos capazes de mitigar a absorção ou os efeitos de metais tóxicos. Assim, este estudo teve como objetivo avaliar se o silicone (Si) e o selênio (Se) mitigam a toxicidade do Al sobre variáveis morfológicas e bioquímicas de Pfaffia glomerata. As plantas foram submetidas às seguintes combinações de Al, Si e Se: 1) Controle; 2) Al 1,85 mM; 3) Si 1,5 mM; 4) Al 1,85 mM + Si 1,5 mM; 5) Se 0,002 mM; 6) Al 1,85 mM + Se 0,002 mM. O delineamento experimental foi inteiramente casualizado com quatro repetições. Ao final do período de exposição aos tratamentos foram analisadas as variáveis morfológicas (massa seca da parte aérea e das raízes, área foliar e morfologia das raízes) e bioquímicas (pigmentos fotossintéticos, teor de peróxido de hidrogênio, peroxidação lipídica e guaiacol peroxidase (POD) e atividade da superóxido dismutase (SOD) em plantas). A toxicidade do alumínio afetou o crescimento de P. glomerata e apenas o Si foi capaz de reverter a ação tóxica do Al, principalmente em períodos mais curtos de exposição. No entanto, o Se não mostrou potencial para inibir significativamente os efeitos tóxicos do Al.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ruziele de Quadros Sandri Strauss, Universidade Federal de Santa Maria - Campus Santa Maria

Degree in Biological Sciences from the Federal University of Santa Maria (2014) and a degree in Environmental Technician from the Federal University of Santa Maria (2014), specializing in Environmental Expertise and Auditing from UNINTER (2015). Master's degree in Agrobiology from the Federal University of Santa Maria. He is in charge of the Department at the Municipal Department of the Environment in the Municipality of Colorado/RS.

Marcos Vinícius Miranda Aguilar, Universidade Federal de Santa Maria - Campus Santa Maria

Forestry Engineer graduated from the Federal Institute of Northern Minas Gerais - IFNMG Salinas Campus (2014-2019). Master's degree in Forestry Engineering from the Federal University of Santa Maria (2019-2021). He is currently a PhD student in the Graduate Program in Forestry Engineering at the Plant Physiology and Plant Nutrition Laboratory. Fellow of the International Academic Mobility Program - Polytechnic Institute of Bragança, Portugal (2018-2019). She has experience in fertilization of forest species, competitive capacity of native species, behavior of forest species and salinity, afforestation and landscaping and recovery of degraded areas. She participates in scientific events, seeking to exchange knowledge, update her academic training and present scientific papers. In terms of professional experience, she has done internships at the companies EUCANOBRE (2016), the Federal University of the Jequitinhonha and Mucuri Valleys /UFVJM Diamantina Campus (2016), EMBRAPA Semiárido (2018) and EMATER (2019). Member of the research groups: Sustainable Production and Technology in the Semi-Arid Region of Minas Gerais, Forestry in the Northern Region of Minas Gerais, IFNMG Sustainable Development Research Group, Water and Environmental Resources of Northern Minas Gerais and Forest Protection Research and Study Group.

Daniel Vinicios Valsoler, Universidade Federal de Santa Maria - Campus Santa Maria

Undergraduate student in Biological Sciences at the Federal University of Santa Maria, scholarship holder in the PET Biology group, carrying out Scientific Initiation in the Plant Physiology and Biochemistry laboratory.

Tais Dorneles de Azevedo, Universidade Federal de Santa Maria - Campus Santa Maria

Biological Sciences undergraduate student at UFSM (Federal University of Santa Maria), Scientific Initiation scholarship holder in the plant physiology laboratory and in search of new learning in various areas.

Luciane Almeri Tabaldi, Universidade Federal de Santa Maria - Campus Santa Maria

She holds a bachelor's degree in Biological Sciences from the Federal University of Santa Maria (2000), a master's degree in Biological Sciences (Toxicological Biochemistry) from the Federal University of Santa Maria (2003) and a doctorate in Agronomy from the Federal University of Santa Maria (2008). She was a substitute professor in the Biology Department at the Federal University of Santa Maria from 2003-2004 and 2006-2008, and a CNPq/FUNDECT DCR Fellow at the Federal University of Grande Dourados. She is currently Associate Professor 3 in the Department of Biology at the Federal University of Santa Maria. She supervises students in the Graduate Programs in Agrobiology and Forestry Engineering at UFSM. She has experience in Biochemistry, Plant Physiology and Medicinal Plants, with an emphasis on aluminum and heavy metal toxicity, toxicological enzymology and oxidative stress, working mainly on the following subjects: metal toxicity, plant resistance to toxic metals, oxidative stress, metal toxicity mitigators, enzymology, medicinal plants and forest species. PET Biology tutor since September 2022. Mother of Maria Eduarda (maternity leave from June/2015 to November/2015).

Referências

Bernardy, K., Farias, J.G., Pereira, A.S., Dorneles, A.O.S., Bernardy, D., Tabaldi, L.A., Neves, V.M., Dressler, V.L. & Nicoloso, F.T. (2020). Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions. Chemosphere 253: 01-11. DOI: https://doi.org/10.1016/j.chemosphere.2020.126692

Bose, J., Babourina, O., Ma, Y., Zhou, M., Shabala, S. & Rengel, Z. (2015). Specificity of Ion Uptake and Homeostasis Maintenance During Acid and Aluminium Stresses. In: Panda, S., Baluška, F. (eds) Aluminum Stress Adaptation in Plants. Signaling and Communication in Plants, 24. DOI: https://doi.org/10.1007/978-3-319-19968-9_12

Cai, J.-G., Luo, L.-M., Tang, H. & Zhou, L. (2018). Cytotoxicity of Malondialdehyde and Cytoprotective Effects of Taurine via Oxidative Stress and PGC-1α Signal Pathway in C2C12 Cells. Molecular Biology 52: 532-542. DOI: https://doi.org/10.1134/S0026893318040040

Casaroli, D. & Van Lier, Q.J. (2008). Critérios para determinação da capacidade de vaso. [Criteria for determining vessel capacity]. Revista Brasileira de Ciência do Solo 32:59-66. DOI: https://doi.org/10.1590/S0100-06832008000100007

Chen, Y.G., He, X.L.S., Huang, J.H., Luo, R., Ge, H.Z., Wołowicz, A. & Chen, S.H. (2021). Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicology and Environmental Safety 219: 01-17. DOI: https://doi.org/10.1016/j.ecoenv.2021.112336

Cunha Neto, A.R., Ambrósio, A.S., Wolowski, M., Westin, T.B., Govêa, K.P., Carvalho, M. & Barbosa, S. (2020). Negative effects on photosynthesis and chloroplast pigments exposed to lead and aluminum: a meta-analysis. Cerne 26: 232-237. DOI: https://doi.org/10.1590/01047760202026022711

Dorneles, A.O.S., Pereira, A.S., Rossato, L.V., Possebom, G., Sasso, V.M., Bernardy, K., Sandri, R.Q., Nicoloso, F.T., Ferreira, P.A.A. & Tabaldi, L.A. (2016). Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Ciência Rural 46: 506-512. DOI: https://doi.org/10.1590/0103-8478cr20150585

Dorneles, A.O.D., Pereira, P.S., Sasso, V.M., Possebom, G., Tarouco, C.P., Schor, M.R.W., Rossato, L., Ferreira, P.A.A. & Tabaldi, L.A. (2019). Aluminum stress tolerance in potato genotypes grown with silicon. Bragantia 78: 12-25. DOI: https://doi.org/10.1590/1678-4499.2018007

Du, H., Huang, Y., Qu, M., Li, Y., Hu, X., Yang, W., Li, H., He, W., Ding, J., Liu C., Gao, S., Cao, M., Lu, Y. & Zhang, S. (2020). A Maize ZmAT6 Gene Confers Aluminum Tolerance via Reactive Oxygen Species Scavenging. Frontiers in Plant Science 11: 01-12. DOI: https://doi.org/10.3389/fpls.2020.01016

El-Moshaty, F.I.B., Pike, S.M., Novacky, A.J. & Sehgal, O.P. (1993). Lipid peroxidation and superoxide productions in cowpea (Vigna unguicultata) leaves infected with tobacco rings virus or southern bean mosaic virus. Journal Physiological and Molecular Plant Pathology 43: 109-119. DOI: https://doi.org/10.1006/pmpp.1993.1044

Ferreira, D.F. (2019). SISVAR: A computer analysis system to fixed effects Split plot type designs. Revista Brasileira de Biometria 37: 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450

Giannopolitis, C. N. & Ries, S. K. (1977). Purification and quantitative relationship with water-soluble protein in seedlings. Journal of Plant Physiology 48: 315-318. DOI: https://doi.org/10.1104/pp.59.2.315

Hiscox, J. D. & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57:1332-1334. DOI: https://doi.org/10.1139/b79-163

Hoagland, D. R. & Arnon, D. I. The waterculture method for growing plants without soil. Berkeley, CA: Agric. Exp. Stn., Univ. Of California. (Circ. 347). 1950.

Huang, H., Li, M., Rizwan, M., Dai, Z., Yuan, Y., Hossain, M.M., Cao, M., Xiong, S. & Tu, S. (2020). Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. Journal of Hazardous Materials 401: 01-11. DOI: https://doi.org/10.1016/j.jhazmat.2020.123393

Jesus, L.R., Batista, B.L. & Lobato, A.K.S. (2017). Silicon reduces aluminum accumulation and mitigates toxic effects in cowpea plants. Acta Physiologiae Plantarum 39: 138-145. DOI: https://doi.org/10.1007/s11738-017-2435-4

Kim, Y.H., Khan, A. L., Waqas, M. & Lee, I. (2017). Silicon regulates antioxidant activities of crop plants under abiotic- induced oxidative stress: a review. Frontiers in Plant Science 8: 01-07. DOI: https://doi.org/10.3389/fpls.2017.00510

Kovács, S., Kutasy, E. & Csajbók, J. (2022). The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants 11: 01-22. DOI: https://doi.org/10.3390/plants11091223

Lima, C.C., Gurgel, E.S.G. & Borges, E.E.L. (2021). Antioxidant enzyme activity in germination of Dalbergia spruceana seeds under different temperatures. Journal of Seed Science 43: 01-10. DOI: https://doi.org/10.1590/2317-1545v43244385

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds). Methods in Enzimology, London: Academic Press. 148: 350-381. DOI: https://doi.org/10.1016/0076-6879(87)48036-1

Loreto, F. & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 12:1781-1787. DOI: https://doi.org/10.1104/pp.010497

Luo, L., Wang, B., Jiang, J., Fitzgerald, M., Huang, Q., Yu, Z., Li, H., Zhang, J., Wei, J., Yang, C., Zhang, H., Dong, L. & Chen, S. (2021). Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Frontiers in Pharmacology 11, 01-14. DOI: https://doi.org/10.3389/fphar.2020.595335

Mota, L. H. S., Scalon, S. P. Q., Dresch, D. M. & Silva, C. J. (2020). Emergence and physiological behavior of provenances of pinhão manso in function of level of aluminum. Bioscience Journal 36: 702-712. DOI: https://doi.org/10.14393/BJ-v36n3a2020-41893

Maksimovic, J.D., Mojović, M., Maksimović, V., Römheld, V. & Nikolic, M. (2012). Silicon amelio rates manganes e toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. Journal of Experimental Botany 63: 2411-2420. DOI: https://doi.org/10.1093/jxb/err359

Maldaner, J., Nicoloso, F.T., Tabaldi, L.A., Cargnelutti, D., Skrebsky, E.C., Rauber, R., Goncalves, J.F. & Rossato, L.V. (2015). Aluminum accumulation in two Pfaffia glomerata genotypes and its growth effects. Ciencia Rural 45: 1013-1020. DOI: https://doi.org/10.1590/0103-8478cr20140439

Mello, R. P. (2006). Water consumption of the Asian lily in vase with different substrata (Master’s thesis). Universidade Federal de Santa Maria. https://repositorio.ufsm.br/handle/1/7490.

Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Mostofa, M. G., Rahman, M., Ansary, M. U., Keya, S.S., Abdelrahman, M., Miah, G. & Tran, L. P. (2021). Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Critical Reviews in Biotechnology 01-18. DOI: https://doi.org/10.1080/07388551.2021.1892582

Nava, G., Reisser Júnior, C., Parent, L.-É., Brunetto, G., Moura-Bueno, J.M., Navroski, R., Benati, J.A. & Barreto, C.F. (2022). Esmeralda peach (Prunus persica) fruit yield and quality response to nitrogen fertilization. Plants 11: 01-17. DOI: https://doi.org/10.3390/plants11030352

Nicoloso, F.T. (2001). Micropropagação do Ginseng Brasileiro [Pfaffia glomerata (Spreng.) Pedersen]. Revista Brasileira de Plantas Medicinais 03: 11-18.

Parrotta, L., Guerriero, G., Sergeant, K., Cai, G. & Hausman, J. (2015). Target or barrier? The cell wall of early and later diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers Plant Science 6: 01-16. DOI: https://doi.org/10.3389/fpls.2015.00133

Pereira, A.S., Dorneles, A.O.S., Bernardy, K., Sasso, V.M., Bernardy, D., Possebom, G., Rossato, L.V., Dressler, V.L. & Tabaldi, L.A. (2018). Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research 25: 18548-18558. DOI: https://doi.org/10.1007/s11356-018-2005-3

Pontigo, S., Godoy, K., Jiménez, H., Gutiérrez-Moraga, A., Mora, M.L.L. & Cartes P. (2017). Silicon-mediated alleviation of aluminum toxicity by modulation of al/si uptake and antioxidant performance in ryegrass plants. Frontiers in Plant Science 08: 01-15. DOI: https://doi.org/10.3389/fpls.2017.00642

Reis, A.R., Lisboa, L.A.M., Reis, H.P.G., Barcelos, J.P. de Q., Santos, E.F., Santini, J.M.K. & Lavres, J. (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiology and Biochemistry 130: 377-390. DOI: https://doi.org/10.1016/j.plaphy.2018.07.028

Schmitt, O.J., Brunetto, G., Chassot, T., Tiecher, T.L., Marchezan, C., Tarouco, C.P., De Conti, L., Lourenzi, C. R., Nicoloso, F.T., Kreutz, M.A. & Andriolo, J.L. (2020). Impact of Cu concentrations in nutrient solution on growth and physiological and biochemical parameters of beet and cabbage and human health risk assessment. Scientia Horticulturae 272: 01-09. DOI: https://doi.org/10.1016/j.scienta.2020.109558

Shetty, R., Vidya, C. S., Prakash, N. B., Lux, A. & Vaculík, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Science of The Total Environment, 65: 01-11. DOI: https://doi.org/10.1016/j.scitotenv.2020.142744

Shiyab, S. (2019). Morphophysiological effects of chromium in sour orange (Citrus aurantium L.). HORTSCIENCE, 54: 829-834. DOI: https://doi.org/10.21273/HORTSCI13809-18

Singh, V.P., Tripathi, D.K., Kumar, D. & Chauhan, D.K. (2011). Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biological Trace Element Research, 144: 1260-1274. DOI: https://doi.org/10.1007/s12011-011-9118-6

Storck, L., Garcia, D. C., Lopes, S. J. & Estefanel, V. (2016) Experimentação vegetal. [Vegetable experimentation] 3. ed. Santa Maria, RS: Editora da UFSM, 198p

Sun, L., Zhang, M., Liu, X., Mao, Q., Shi, C., Kochian, L. V. & Liao, H. (2020). Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology 62: 984-987. DOI: https://doi.org/10.1111/jipb.12942

Tabaldi, L.A., Cargnelutti, D., Gonçalves, J.F., Pereira, L.B., Castro, G.Y., Maldaner, J., Rauber, R., Rossato, L.V., Bisognin, D.A., Schetinger, M.R.C. & Nicoloso, F.T. (2009). Oxidative stress is an early symptom triggered by aluminum in al sensitive potato plantlets. Chemosphere 761:1402-1409. DOI: https://doi.org/10.1016/j.chemosphere.2009.06.011

Tabaldi, L.A., Nicoloso, F.T., Castro, G.Y., Cargnelutti, D., Gonçalves, J.F., Rauber, R., Skrebsky, E.C., Schetinger, M.R.C., Morsch, V.M. & Bisognin, D.A. (2007). Physiological and oxidative stress responses of four potato clones to aluminum in nutrient solution. Brazilian Journal of Plant Physiology 19: 211-222. DOI: https://doi.org/10.1590/S1677-04202007000300005

Trippe, R.C. & Pilon-Smits, E.A.H. (2021). Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. Journal of Hazardous Materials 404: 124-134. DOI: https://doi.org/10.1016/j.jhazmat.2020.124178

Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. & Guo, S. (2017). Role of Silicon on Plant-Pathogen Interactions. Frontiers in Plant Science 8: 01-14. DOI: https://doi.org/10.3389/fpls.2017.00701

Wei, Y., Han, R., Xie, Y., Jiang, C. & Yu, Y. (2021). Recent advances in understanding mechanisms of plant tolerance and response to aluminum toxicity. Sustainability 13: 01-22. DOI: https://doi.org/10.3390/su13041782

Wu, Z., Liu, S., Zhao, J., Wang, F., Du, Y., Zou, S., Li, H., Wen, D. & Huang, Y. (2017). Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environmental and Experimental Botany 133: 01-11. DOI: https://doi.org/10.1016/j.envexpbot.2016.09.005

Xu, P., Chukhutsina, V. U., Nawrocki, W. J., Schansker, G., Bielczynski, L. W, Lu, Y., Karcher, D., Bock, R. & Croce, R. (2020). Photosynthesis without b-carotene. Elife 01-14. DOI: https://doi.org/10.7554/eLife.58984.sa2

Zeraik, A. E., Souza, F. S. & Fatibello-Filho, O. (2008). Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação [Spot test development to monitor peroxidase activity in purification procedure]. Química Nova 31: 731-734. DOI: https://doi.org/10.1590/S0100-40422008000400003

Zhang, H., Li, Xy., Lin, M., Hu, P., Lai, N., Huang, Z. & Chen, L. (2022). The aluminum distribution and translocation in two citrus species difering in aluminum tolerance. BMC Plant Biology 22: 01-11. DOI: https://doi.org/10.1186/s12870-022-03472-5

Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H. & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports 11: 01-11. DOI: https://doi.org/10.1038/s41598-021-89322-0

Zhu, Y.X. & Gong, H.J. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34: 455-472. DOI: https://doi.org/10.1007/s13593-013-0194-1

Zhu, Z., Wei, G., Li, J., Qian, Q. & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167: 527-533. DOI: https://doi.org/10.1016/j.plantsci.2004.04.020

Downloads

Publicado

2024-04-10

Como Citar

Strauss, R. de Q. S., Aguilar, M. V. M., Valsoler, D. V., Azevedo, T. D. de, & Tabaldi, L. A. (2024). O silício e o selênio mitigam a toxicidade do alumínio em Pfaffia glomerata (Spreng.) Pedersen?. Ciência E Natura, 46, e85995. https://doi.org/10.5902/2179460X85995

Edição

Seção

Biologia-Botânica

Artigos mais lidos pelo mesmo(s) autor(es)