Microalgae cultivation: from waste as nutrients source to CO2 mitigation – a review containing CFD modeling
DOI:
https://doi.org/10.5902/2179460X85133Keywords:
Microalgae, Cultivation, Nutrients, Wastewater, Bioproducts , CFDAbstract
The increasing concern for environmental management promotes the development of new products and processes, aiming for economic progress with environmental protection. Through the cultivation of microalgae, photosynthetic organisms that convert water, CO2 and light into oxygen and biomass, able to produce an unlimited amount of biocompounds. Factors such as temperature, pH, type of system and culture medium used are essential for its development and biomass composition. These microbes can not only absorb inorganic matter from the effluent and assimilate these nutrients for its growth, minimizing the cost of nutrient addition, but also absorb CO2 in the atmosphere or flue gas through photosynthesis Thus, this work presents a review on the cultivation of microalgae using wastewater as a source of nutrients generating compounds with industrial interest and biotechnological applications besides a computational fluid dynamics (CFD) modeling for CO2 reduction aiming the scale-up. The use of wastewater for the cultivation of microalgae has been studied for years, as well CO2 mitigation, however, there is still much to be explored to obtain greater use of waste; and together with the increasing of CFD technique applied for bioprocess, they can contribute for process optimization, scale-up and improvements in the environment.
Downloads
References
Adeniran, A. E., Nubi, A. T., & Adelopo, A. O. (2017). Solid waste generation and characterization in the University of Lagos for a sustainable waste management. Waste Management, 67, 3–10. https://doi.org/10.1016/j.wasman.2017.05.002 DOI: https://doi.org/10.1016/j.wasman.2017.05.002
Almohammed, N., Alobaid, F., Breuer, M., & Epple, B. (2014). A comparative study on the influence of the gas flow rate on the hydrodynamics of a gas-solid spouted fluidized bed using Euler-Euler and Euler-Lagrange/DEM models. Powder Technology, 264, 343–364. https://doi.org/10.1016/j.powtec.2014.05.024 DOI: https://doi.org/10.1016/j.powtec.2014.05.024
Amini, H., Hashemisohi, A., Wang, L., Shahbazi, A., Bikdash, M. K. C. D., & Yuan, W. (2016). Numerical and experimental investigation of hydrodynamics and light transfer in open raceway ponds at various algal cell concentrations and medium depths. Chemical Engineering Science, 156, 11–23. https://doi.org/10.1016/j.ces.2016.09.003 DOI: https://doi.org/10.1016/j.ces.2016.09.003
An, J.-Y., Sim, S.-J., Suk Lee, J., & Woo Kim, B. (2003). Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. DOI: https://doi.org/10.1023/A:1023855710410
Ansari, F. A., Singh, P., Guldhe, A., & Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177. https://doi.org/10.1016/j.algal.2016.11.015 DOI: https://doi.org/10.1016/j.algal.2016.11.015
Antelo, F. S., Anschau, A., Costa, J. A. V, & Kalil, S. J. (2010). Extraction and Purification of C-phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. Em J. Braz. Chem. Soc. 21(5). DOI: https://doi.org/10.1590/S0103-50532010000500022
Arenas, E. G., Rodriguez Palacio, M. C., Juantorena, A. U., Fernando, S. E. L., & Sebastian, P. J. (2017). Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges. Em International Journal of Energy Research, 41(6), 761–789. John Wiley and Sons Ltd. https://doi.org/10.1002/er.3663 DOI: https://doi.org/10.1002/er.3663
Arora, A., & Saxena, S. (2005). Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents. Biomass and Bioenergy, 29(1), 60–64. https://doi.org/10.1016/j.biombioe.2005.02.002 DOI: https://doi.org/10.1016/j.biombioe.2005.02.002
Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003 DOI: https://doi.org/10.1016/j.ecoleng.2006.04.003
Banerjee, S., & Ramaswamy, S. (2019). Dynamic process model and economic analysis of microalgae cultivation in flat panel photobioreactors. Algal Research, 39. https://doi.org/10.1016/j.algal.2019.101445 DOI: https://doi.org/10.1016/j.algal.2019.101445
Barrocal, V. M., García-Cubero, M. T., González-Benito, G., & Coca, M. (2010). Production of biomass by Spirulina maxima using sugar beet vinasse in growth media. New Biotechnology, 27(6), 851–856. https://doi.org/10.1016/j.nbt.2010.07.001 DOI: https://doi.org/10.1016/j.nbt.2010.07.001
Batista, A. P., Ambrosano, L., Graça, S., Sousa, C., Marques, P. A. S. S., Ribeiro, B., Botrel, E. P., Castro Neto, P., & Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production - An integrated microalgae-based approach. Bioresource Technology, 184, 230–235. https://doi.org/10.1016/j.biortech.2014.10.064 DOI: https://doi.org/10.1016/j.biortech.2014.10.064
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002 DOI: https://doi.org/10.1016/j.biotechadv.2006.11.002
Becker, E. W., & Venkataraman, L. V. (1984). Production and Utilization of the Blue-green Alga Spirulina in India. Biomass, 4. DOI: https://doi.org/10.1016/0144-4565(84)90060-X
Berberoglu, H., Pilon, L., & Melis, A. (2008). Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CW+. International Journal of Hydrogen Energy, 33(22), 6467–6483. https://doi.org/10.1016/j.ijhydene.2008.07.071 DOI: https://doi.org/10.1016/j.ijhydene.2008.07.071
Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. https://doi.org/10.1016/j.apenergy.2010.12.064 DOI: https://doi.org/10.1016/j.apenergy.2010.12.064
Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Em Computers and Electronics in Agriculture 76(2), 131–147. https://doi.org/10.1016/j.compag.2011.01.015 DOI: https://doi.org/10.1016/j.compag.2011.01.015
Calixto, C. D., Silva Santana, J. K., Lira, E. B., Sassi, P. G. P., Rosenhaim, R., Costa Sassi, C. F., Conceição, M. M., & Sassi, R. (2016). Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresource Technology, 221, 438–446. https://doi.org/10.1016/j.biortech.2016.09.066 DOI: https://doi.org/10.1016/j.biortech.2016.09.066
Cardoso, A. S. V. G. E. G., & M. A. K. (2011). O uso de microalgas para a obtenção de biocombustíveis. Revista Brasileira De Biociências, 9. https://doi.org/https://seer.ufrgs.br/index.php/rbrasbioci/article/view/115473
Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., Delledonne, M., & Ballottari, M. (2018). Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24979-8 DOI: https://doi.org/10.1038/s41598-018-24979-8
Chae, S. R., Hwang, E. J., & Shin, H. S. (2006). Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technology, 97(2), 322–329. https://doi.org/10.1016/j.biortech.2005.02.037 DOI: https://doi.org/10.1016/j.biortech.2005.02.037
Chalker, B. E. (1980). Modeling light saturation curves for photosynthesis: An exponential function. Journal of Theoretical Biology, 84(2), 205–215. https://doi.org/10.1016/S0022-5193(80)80004-X DOI: https://doi.org/10.1016/S0022-5193(80)80004-X
Chang, H. X., Huang, Y., Fu, Q., Liao, Q., & Zhu, X. (2016). Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresource Technology, 206, 231–238. https://doi.org/10.1016/j.biortech.2016.01.087 DOI: https://doi.org/10.1016/j.biortech.2016.01.087
Cheng, J., Lai, X., Ye, Q., Guo, W., Xu, J., Ren, W., & Zhou, J. (2019). A novel jet-aerated tangential swirling-flow plate photobioreactor generates microbubbles that enhance mass transfer and improve microalgal growth. Bioresource Technology, 288. https://doi.org/10.1016/j.biortech.2019.121531 DOI: https://doi.org/10.1016/j.biortech.2019.121531
Cheng, J., Song, Y., Miao, Y., Guo, W., Wang, Y., Li, X., Yang, W., & Zhou, J. (2020). Three-Stage Shear-Serrated Aerator Broke CO2 Bubbles to Promote Mass Transfer and Microalgal Growth. ACS Sustainable Chemistry and Engineering, 8(2), 939–947. https://doi.org/10.1021/acssuschemeng.9b05510 DOI: https://doi.org/10.1021/acssuschemeng.9b05510
Cheng, Y. W., Lim, J. S. M., Chong, C. C., Lam, M. K., Lim, J. W., Tan, I. S., Foo, H. C. Y., Show, P. L., & Lim, S. (2021). Unravelling CO2 capture performance of microalgae cultivation and other technologies via comparative carbon balance analysis. Journal of Environmental Chemical Engineering, 9(6). https://doi.org/10.1016/j.jece.2021.106519 DOI: https://doi.org/10.1016/j.jece.2021.106519
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001
Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. Bin, Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology 184, 179–189. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2014.11.080 DOI: https://doi.org/10.1016/j.biortech.2014.11.080
Chojnacka, K., & Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 34(5), 461–465. https://doi.org/10.1016/j.enzmictec.2003.12.002 DOI: https://doi.org/10.1016/j.enzmictec.2003.12.002
Coca, M., Barrocal, V. M., Lucas, S., González-Benito, G., & García-Cubero, M. T. (2015). Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food and Bioproducts Processing, 94, 306–312. https://doi.org/10.1016/j.fbp.2014.03.012 DOI: https://doi.org/10.1016/j.fbp.2014.03.012
Costa, J. A. V., & de Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9. https://doi.org/10.1016/j.biortech.2010.06.014 DOI: https://doi.org/10.1016/j.biortech.2010.06.014
da Fontoura, J. T., Rolim, G. S., Farenzena, M., & Gutterres, M. (2017). Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Safety and Environmental Protection, 111, 355–362. https://doi.org/10.1016/j.psep.2017.07.024 DOI: https://doi.org/10.1016/j.psep.2017.07.024
D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews.58, 832–841. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.162 DOI: https://doi.org/10.1016/j.rser.2015.12.162
Darpito, C., Shin, W. S., Jeon, S., Lee, H., Nam, K., Kwon, J. H., & Yang, J. W. (2015). Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production. Bioprocess and Biosystems Engineering, 38(3), 523–530. https://doi.org/10.1007/s00449-014-1292-4 DOI: https://doi.org/10.1007/s00449-014-1292-4
Dasan, Y. K., Lam, M. K., Yusup, S., Lim, J. W., Show, P. L., Tan, I. S., & Lee, K. T. (2020). Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: A stress-inducing strategy for lipid accumulation and carbon dioxide fixation. Journal of CO2 Utilization, 41, 101226. https://doi.org/10.1016/j.jcou.2020.101226 DOI: https://doi.org/10.1016/j.jcou.2020.101226
Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280–1287. https://doi.org/10.1016/j.enconman.2010.09.025 DOI: https://doi.org/10.1016/j.enconman.2010.09.025
Depraetere, O., Foubert, I., & Muylaert, K. (2013). Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresource Technology, 148, 366–372. https://doi.org/10.1016/j.biortech.2013.08.165 DOI: https://doi.org/10.1016/j.biortech.2013.08.165
dos Santos, R. R., Araújo, O. de Q. F., de Medeiros, J. L., & Chaloub, R. M. (2016). Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresource Technology, 204, 38–48. https://doi.org/10.1016/j.biortech.2015.12.077 DOI: https://doi.org/10.1016/j.biortech.2015.12.077
Ebrahimian, A., Kariminia, H. R., & Vosoughi, M. (2014). Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71, 502–508. https://doi.org/10.1016/j.renene.2014.05.031 DOI: https://doi.org/10.1016/j.renene.2014.05.031
Farooq, W., Lee, Y. C., Ryu, B. G., Kim, B. H., Kim, H. S., Choi, Y. E., & Yang, J. W. (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 132, 230–238. https://doi.org/10.1016/j.biortech.2013.01.034 DOI: https://doi.org/10.1016/j.biortech.2013.01.034
Fazal, T., Mushtaq, A., Rehman, F., Ullah Khan, A., Rashid, N., Farooq, W., Rehman, M. S. U., & Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews. 82, 3107–3126. Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.10.029 DOI: https://doi.org/10.1016/j.rser.2017.10.029
Feng, Y., Li, C., & Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102(1), 101–105. https://doi.org/10.1016/j.biortech.2010.06.016 DOI: https://doi.org/10.1016/j.biortech.2010.06.016
Fernandes De Carvalho, L., Moreira, J. B., Souza Oliveira, M., & Vieira Costa, J. A. (2018). BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY A N I N T E R N A T I O N A L J O U R N A L Novel Food Supplements Formulated With Spirulina To Meet Athletes’ Needs. Braz. Arch. Biol. Technol. 61, 18160656–18162018. https://doi.org/10.1590/1678-4324 DOI: https://doi.org/10.1590/1678-4324-2017160656
Ferreira, A., Ribeiro, B., Marques, P. A. S. S., Ferreira, A. F., Dias, A. P., Pinheiro, H. M., Reis, A., & Gouveia, L. (2017). Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purposes. Journal of Cleaner Production, 165, 1316–1327. https://doi.org/10.1016/j.jclepro.2017.07.232 DOI: https://doi.org/10.1016/j.jclepro.2017.07.232
Ferreira, G. F., Ríos Pinto, L. F., Maciel Filho, R., & Fregolente, L. V. (2019). A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews, 109, 448–466. Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.04.052 DOI: https://doi.org/10.1016/j.rser.2019.04.052
Ferrua, M. J., & Singh, R. P. (2013). Computational modeling of gastrointestinal fluid dynamics. Lecture Notes in Computational Vision and Biomechanics, 10, 243–266. Springer Netherlands. https://doi.org/10.1007/978-94-007-6561-0_13 DOI: https://doi.org/10.1007/978-94-007-6561-0_13
Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87(3), 756–761. https://doi.org/10.1016/j.apenergy.2009.09.006 DOI: https://doi.org/10.1016/j.apenergy.2009.09.006
Gentil, E. C., Gallo, D., & Christensen, T. H. (2011). Environmental evaluation of municipal waste prevention. Waste Management, 31(12), 2371–2379. https://doi.org/10.1016/j.wasman.2011.07.030 DOI: https://doi.org/10.1016/j.wasman.2011.07.030
Gentili, F. G. (2014). Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresource Technology, 169, 27–32. https://doi.org/10.1016/j.biortech.2014.06.061 DOI: https://doi.org/10.1016/j.biortech.2014.06.061
Gilbert-López, B., Mendiola, J. A., Fontecha, J., Van Den Broek, L. A. M., Sijtsma, L., Cifuentes, A., Herrero, M., & Ibáñez, E. (2015). Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chemistry, 17(9), 4599–4609. https://doi.org/10.1039/c5gc01256b DOI: https://doi.org/10.1039/C5GC01256B
Glemser, M., Heining, M., Schmidt, J., Becker, A., Garbe, D., Buchholz, R., & Brück, T. (2016). Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology, 100(3), 1077–1088. Springer Verlag. https://doi.org/10.1007/s00253-015-7144-6 DOI: https://doi.org/10.1007/s00253-015-7144-6
Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., Neto, P. C., Ferreira, A. F., & Silva, C. M. (2016). Microalgae biomass production using wastewater: Treatment and costs. Scale-up considerations. Algal Research, 16, 167–176. https://doi.org/10.1016/j.algal.2016.03.010 DOI: https://doi.org/10.1016/j.algal.2016.03.010
Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299–315. Academic Press. https://doi.org/10.1016/j.jenvman.2017.08.012 DOI: https://doi.org/10.1016/j.jenvman.2017.08.012
Guo, B., Lei, C., Kobayashi, H., Ito, T., Yalikun, Y., Jiang, Y., Tanaka, Y., Ozeki, Y., & Goda, K. (2017). High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy. Cytometry Part A, 91(5), 494–502. https://doi.org/10.1002/cyto.a.23084 DOI: https://doi.org/10.1002/cyto.a.23084
Guo, W., Cheng, J., Song, Y., Liu, S., Ali, K. A., & Kumar, S. (2019). Three-dimensional numerical simulation of light penetration in an optimized flow field composed of microalgae cells, carbon dioxide bubbles and culture medium. Bioresource Technology, 292. https://doi.org/10.1016/j.biortech.2019.121979 DOI: https://doi.org/10.1016/j.biortech.2019.121979
Gupta, S. K., Ansari, F. A., Shriwastav, A., Sahoo, N. K., Rawat, I., & Bux, F. (2016). Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, 115, 255–264. https://doi.org/10.1016/j.jclepro.2015.12.040 DOI: https://doi.org/10.1016/j.jclepro.2015.12.040
Hannis Ruud van Ommen, K., & Robbert Kleerebezem Robert Mudde, N. (2013). Optical behavior of algae particles in photobioreactors Subject to confidentiality agreements? Sustainable Energy Technology.
He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181. https://doi.org/10.1016/j.biortech.2012.10.162 DOI: https://doi.org/10.1016/j.biortech.2012.10.162
Hena, S., Fatimah, S., & Tabassum, S. (2015). Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources and Industry, 10, 1–14. https://doi.org/10.1016/j.wri.2015.02.002 DOI: https://doi.org/10.1016/j.wri.2015.02.002
Ho, S. H., Chen, C. Y., Lee, D. J., & Chang, J. S. (2011). Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnology Advances, 29(2), 189–198. https://doi.org/10.1016/j.biotechadv.2010.11.001 DOI: https://doi.org/10.1016/j.biotechadv.2010.11.001
Huang, J., Qu, X., Wan, M., Ying, J., Li, Y., Zhu, F., Wang, J., Shen, G., Chen, J., & Li, W. (2015). Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. Algal Research, 10, 64–71. https://doi.org/10.1016/j.algal.2015.04.012 DOI: https://doi.org/10.1016/j.algal.2015.04.012
Jebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037 DOI: https://doi.org/10.1016/j.biortech.2015.09.037
Kang, C. D., An, J. Y., Park, T. H., & Sim, S. J. (2006). Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal, 31(3), 234–238. https://doi.org/10.1016/j.bej.2006.08.002 DOI: https://doi.org/10.1016/j.bej.2006.08.002
Kligerman, D. C., & Bouwer, E. J. (2015). Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable and Sustainable Energy Reviews, 52, 1834–1846. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.08.030 DOI: https://doi.org/10.1016/j.rser.2015.08.030
Koçer, A. T., İnan, B., Özçimen, D., & Gökalp, İ. (2023). A study of microalgae cultivation in hydrothermal carbonization process water: Nutrient recycling, characterization and process design. Environmental Technology and Innovation, 30. https://doi.org/10.1016/j.eti.2023.103048 DOI: https://doi.org/10.1016/j.eti.2023.103048
Kong, W., Kong, J., Feng, S., Yang, T. T., Xu, L., Shen, B., Bi, Y., & Lyu, H. (2024). Cultivation of microalgae–bacteria consortium by waste gas–waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnology for Biofuels and Bioproducts, 17(1). BioMed Central Ltd. https://doi.org/10.1186/s13068-023-02409-w DOI: https://doi.org/10.1186/s13068-023-02409-w
Kothari, R., Prasad, R., Kumar, V., & Singh, D. P. (2013). Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresource Technology, 144, 499–503. https://doi.org/10.1016/j.biortech.2013.06.116 DOI: https://doi.org/10.1016/j.biortech.2013.06.116
Kuo, C. M., Chen, T. Y., Lin, T. H., Kao, C. Y., Lai, J. T., Chang, J. S., & Lin, C. S. (2015). Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresource Technology, 194, 326–333. https://doi.org/10.1016/j.biortech.2015.07.026 DOI: https://doi.org/10.1016/j.biortech.2015.07.026
Lam, M. K., & Lee, K. T. (2011). Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection. Biotechnology Advances, 29(1), 124–141. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2010.10.001 DOI: https://doi.org/10.1016/j.biotechadv.2010.10.001
Lau, P. S., Tam, N. F. Y., & Wong A’~, Y. S. (1995). EFFECT OF ALGAL DENSITY ON NUTRIENT REMOVAL FROM PRIMARY SETTLED WASTEWATER. Environmental Pollution, 89. DOI: https://doi.org/10.1016/0269-7491(94)00044-E
Li, X., Xu, H., & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4), 764–771. https://doi.org/10.1002/bit.21489 DOI: https://doi.org/10.1002/bit.21489
Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091 DOI: https://doi.org/10.1016/j.biortech.2011.01.091
Liffman, K., Paterson, D. A., Liovic, P., & Bandopadhayay, P. (2013). Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chemical Engineering Research and Design, 91(2), 221–226. https://doi.org/10.1016/j.cherd.2012.08.007 DOI: https://doi.org/10.1016/j.cherd.2012.08.007
López-Rosales, L., Sánchez-Mirón, A., Contreras-Gómez, A., García-Camacho, F., Battaglia, F., Zhao, L., & Molina-Grima, E. (2019). Characterization of bubble column photobioreactors for shear-sensitive microalgae culture. Bioresource Technology, 275, 1–9. https://doi.org/10.1016/j.biortech.2018.12.009 DOI: https://doi.org/10.1016/j.biortech.2018.12.009
Maity, J. P., Bundschuh, J., Chen, C. Y., & Bhattacharya, P. (2014). Microalgae for third generation biofuel production, mitigation ofgreenhouse gas emissions and wastewater treatment: Present andfuture perspectives - A mini review. Energy, 78, 104–113. https://doi.org/10.1016/j.energy.2014.04.003 DOI: https://doi.org/10.1016/j.energy.2014.04.003
Mandal, S., & Mallick, N. (2011). Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Applied and Environmental Microbiology, 77(1), 374–377. https://doi.org/10.1128/AEM.01205-10 DOI: https://doi.org/10.1128/AEM.01205-10
Marques, S. S. I., Nascimento, I. A., De Almeida, P. F., & Chinalia, F. A. (2013). Growth of Chlorella vulgaris on sugarcane vinasse: The effect of anaerobic digestion pretreatment. Applied Biochemistry and Biotechnology, 171(8), 1933–1943. https://doi.org/10.1007/s12010-013-0481-y DOI: https://doi.org/10.1007/s12010-013-0481-y
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Em Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020 DOI: https://doi.org/10.1016/j.rser.2009.07.020
Mata, T. M., Melo, A. C., Simões, M., & Caetano, N. S. (2012). Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresource Technology, 107, 151–158. https://doi.org/10.1016/j.biortech.2011.12.109 DOI: https://doi.org/10.1016/j.biortech.2011.12.109
Miao, X., & Wu, Q. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110(1), 85–93. https://doi.org/10.1016/j.jbiotec.2004.01.013 DOI: https://doi.org/10.1016/j.jbiotec.2004.01.013
Mittersteiner, M., Schmitz, F., & Barcellos, I. O. (2017). Reuse of dye-colored water post-treated with industrial waste: Its adsorption kinetics and evaluation of method efficiency in cotton fabric dyeing. Journal of Water Process Engineering, 17, 181–187. https://doi.org/10.1016/j.jwpe.2017.04.004 DOI: https://doi.org/10.1016/j.jwpe.2017.04.004
Moreira, J. B., Santos, T. D., Duarte, J. H., Bezerra, P. Q. M., de Morais, M. G., & Costa, J. A. V. (2023). Role of microalgae in circular bioeconomy: from waste treatment to biofuel production. Clean Technologies and Environmental Policy, 25(2), 427–437. https://doi.org/10.1007/s10098-021-02149-1 DOI: https://doi.org/10.1007/s10098-021-02149-1
Otsuki, T. (2001). A study for the biological CO fixation and utilization 2 system. The Science of the Total Environment, 277. DOI: https://doi.org/10.1016/S0048-9697(01)00831-2
Oyebamiji, O. O., Boeing, W. J., Holguin, F. O., Ilori, O., & Amund, O. (2019). Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances. Bioresource Technology Reports, 7. https://doi.org/10.1016/j.biteb.2019.100247 DOI: https://doi.org/10.1016/j.biteb.2019.100247
Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 102(22), 10163–10172. https://doi.org/10.1016/j.biortech.2011.08.030 DOI: https://doi.org/10.1016/j.biortech.2011.08.030
Peter, A. P., Chew, K. W., Koyande, A. K., Munawaroh, H. S. H., Bhatnagar, A., Tao, Y., Sun, C., Sun, F., Ma, Z., & Show, P. L. (2023). Integrated microalgae culture with food processing waste for wastewater remediation and enhanced biomass productivity. Chinese Chemical Letters, 34(2), 107721. https://doi.org/10.1016/j.cclet.2022.08.001 DOI: https://doi.org/10.1016/j.cclet.2022.08.001
Pfaffinger, C. E., Schöne, D., Trunz, S., Löwe, H., & Weuster-Botz, D. (2016). Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Research, 20, 153–163. https://doi.org/10.1016/j.algal.2016.10.002 DOI: https://doi.org/10.1016/j.algal.2016.10.002
Qi, W., Chen, T., Wang, L., Wu, M., Zhao, Q., & Wei, W. (2017). High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation. Bioresource Technology, 227, 317–323. https://doi.org/10.1016/j.biortech.2016.12.062 DOI: https://doi.org/10.1016/j.biortech.2016.12.062
Ramirez, N. N. V., Farenzena, M., & Trierweiler, J. O. (2014). Growth of microalgae Scenedesmus sp in ethanol vinasse. Brazilian Archives of Biology and Technology, 57(5), 630–635. https://doi.org/10.1590/S1516-8913201401791 DOI: https://doi.org/10.1590/S1516-8913201401791
Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review. Renewable and Sustainable Energy Reviews, 27, 622–653. https://doi.org/10.1016/j.rser.2013.05.063 DOI: https://doi.org/10.1016/j.rser.2013.05.063
Ren, H., Tuo, J., Addy, M. M., Zhang, R., Lu, Q., Anderson, E., Chen, P., & Ruan, R. (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 245, 1130–1138. https://doi.org/10.1016/j.biortech.2017.09.040 DOI: https://doi.org/10.1016/j.biortech.2017.09.040
Ren, Y., Gong, J., Fu, R., Li, Z., Yu, Z., Lou, J., Wang, F., & Zhang, J. (2017). Dyeing and functional properties of polyester fabric dyed with prodigiosins nanomicelles produced by microbial fermentation. Journal of Cleaner Production, 148, 375–385. https://doi.org/10.1016/j.jclepro.2017.01.168 DOI: https://doi.org/10.1016/j.jclepro.2017.01.168
Richmond, A. (2004). Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 1. DOI: https://doi.org/10.1002/9780470995280
Sadeghizadeh, A., Rahimi, R., & Farhad Dad, F. (2018). Computational fluid dynamics modeling of carbon dioxide capture from air using biocatalyst in an airlift reactor. Bioresource Technology, 253, 154–164. https://doi.org/10.1016/j.biortech.2018.01.025 DOI: https://doi.org/10.1016/j.biortech.2018.01.025
Sadino-Riquelme, C., Hayes, R. E., Jeison, D., & Donoso-Bravo, A. (2018). Computational fluid dynamic (CFD) modelling in anaerobic digestion: General application and recent advances. Critical Reviews in Environmental Science and Technology 48(1), 39–76. Taylor and Francis Inc. https://doi.org/10.1080/10643389.2018.1440853 DOI: https://doi.org/10.1080/10643389.2018.1440853
Saleem, S., Sheikh, Z., Iftikhar, R., & Zafar, M. I. (2024). Eco-friendly cultivation of microalgae using a horizontal twin layer system for treatment of real solid waste leachate. Journal of Environmental Management, 351. https://doi.org/10.1016/j.jenvman.2023.119847 DOI: https://doi.org/10.1016/j.jenvman.2023.119847
Schmitz, R. M. C. D. C. L. M. (2012). APLICAÇÕES AMBIENTAIS DE MICROALGAS. Revista CIATEC-UPF, 4, 48–60. DOI: https://doi.org/10.5335/ciatec.v4i1.2393
Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Em Renewable and Sustainable Energy Reviews (Vol. 50, p. 431–444). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.05.024 DOI: https://doi.org/10.1016/j.rser.2015.05.024
Sniegoňová, P., Szotkowski, M., Holub, J., Sikorová, P., & Márová, I. (2023). The Effect of Oil-Rich Food Waste Substrates, Used as an Alternative Carbon Source, on the Cultivation of Microalgae—A Pilot Study. Microorganisms, 11(7). https://doi.org/10.3390/microorganisms11071621 DOI: https://doi.org/10.3390/microorganisms11071621
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. https://doi.org/10.1263/jbb.101.87 DOI: https://doi.org/10.1263/jbb.101.87
Sreesai, S., & Pakpain, P. (2007). Nutrient recycling by Chlorella vulgaris from septage effluent of the Bangkok City, Thailand. ScienceAsia, 33(3), 293–299. https://doi.org/10.2306/scienceasia1513-1874.2007.33.293 DOI: https://doi.org/10.2306/scienceasia1513-1874.2007.33.293
Stengel, D. B., Connan, S., & Popper, Z. A. (2011). Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances, 29(5), 483–501. https://doi.org/10.1016/j.biotechadv.2011.05.016 DOI: https://doi.org/10.1016/j.biotechadv.2011.05.016
Subramaniyam, V., Subashchandrabose, S. R., Ganeshkumar, V., Thavamani, P., Chen, Z., Naidu, R., & Megharaj, M. (2016). Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresource Technology, 211, 698–703. https://doi.org/10.1016/j.biortech.2016.03.154 DOI: https://doi.org/10.1016/j.biortech.2016.03.154
Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.11.026 DOI: https://doi.org/10.1016/j.rser.2015.11.026
Sun, J., Yang, L., Xiao, S., Chu, H., Jiang, S., Yu, Z., Zhou, X., & Zhang, Y. (2022). A promising microalgal wastewater cyclic cultivation technology: Dynamic simulations, economic viability, and environmental suitability. Water Research, 217, 118411. https://doi.org/10.1016/j.watres.2022.118411 DOI: https://doi.org/10.1016/j.watres.2022.118411
Tam, Y., & Wong, Y. S. (1989). Wastewater Nutrient Removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution, 58. DOI: https://doi.org/10.1016/0269-7491(89)90234-0
Ummalyma, S. B., & Sukumaran, R. K. (2014). Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresource Technology, 165(C), 295–301. https://doi.org/10.1016/j.biortech.2014.03.028 DOI: https://doi.org/10.1016/j.biortech.2014.03.028
Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., & Wangikar, P. P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 184, 363–372. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2014.11.040 DOI: https://doi.org/10.1016/j.biortech.2014.11.040
Villaró-Cos, S., Cuaresma Franco, M., García-Vaquero, M., Morán, L., Alarcón, F. J., & Lafarga, T. (2024). Composition of microalgae produced using different types of water and nutrient sources. Algal Research, 78. https://doi.org/10.1016/j.algal.2024.103394 DOI: https://doi.org/10.1016/j.algal.2024.103394
Wan Mahari, W. A., Wan Razali, W. A., Manan, H., Hersi, M. A., Ishak, S. D., Cheah, W., Chan, D. J. C., Sonne, C., Show, P. L., & Lam, S. S. (2022). Recent advances on microalgae cultivation for simultaneous biomass production and removal of wastewater pollutants to achieve circular economy. Bioresource Technology, 364. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2022.128085 DOI: https://doi.org/10.1016/j.biortech.2022.128085
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174–1186. https://doi.org/10.1007/s12010-009-8866-7 DOI: https://doi.org/10.1007/s12010-009-8866-7
Wang, L., Wang, Q., Zhao, R., Tao, Y., Ying, K. Z., & Mao, X. Z. (2021). Novel Flat-Plate Photobioreactor with Inclined Baffles and Internal Structure Optimization to Improve Light Regime Performance. ACS Sustainable Chemistry and Engineering, 9(4), 1550–1558. https://doi.org/10.1021/acssuschemeng.0c06109 DOI: https://doi.org/10.1021/acssuschemeng.0c06109
Wang, S. K., Stiles, A. R., Guo, C., & Liu, C. Z. (2014). Microalgae cultivation in photobioreactors: An overview of light characteristics. Em Engineering in Life Sciences 14(6), 550–559. Wiley-VCH Verlag. https://doi.org/10.1002/elsc.201300170 DOI: https://doi.org/10.1002/elsc.201300170
Wheaton, Z. C., & Krishnamoorthy, G. (2012). Modeling radiative transfer in photobioreactors for algal growth. Computers and Electronics in Agriculture, 87, 64–73. https://doi.org/10.1016/j.compag.2012.05.002 DOI: https://doi.org/10.1016/j.compag.2012.05.002
Xu, J., Cheng, J., Xin, K., Xu, J., & Yang, W. (2020). Developing a Spiral-Ascending CO2Dissolver to Enhance CO2Mass Transfer in a Horizontal Tubular Photobioreactor for Improved Microalgal Growth. ACS Sustainable Chemistry and Engineering, 8(51), 18926–18935. https://doi.org/10.1021/acssuschemeng.0c06124 DOI: https://doi.org/10.1021/acssuschemeng.0c06124
Yamaguchi, S. K. F., Moreira, J. B., Costa, J. A. V., De Souza, C. K., Bertoli, S. L., & Carvalho, L. F. De. (2019). Evaluation of adding spirulina to freeze-dried yogurts before fermentation and after freeze-drying. Industrial Biotechnology, 15(2), 89–94. https://doi.org/10.1089/ind.2018.0030 DOI: https://doi.org/10.1089/ind.2018.0030
Yuan, C., Zhao, S., Ni, J., He, Y., Cao, B., Hu, Y., Wang, S., Qian, L., & Abomohra, A. (2023). Integrated route of fast hydrothermal liquefaction of microalgae and sludge by recycling the waste aqueous phase for microalgal growth. Fuel, 334. https://doi.org/10.1016/j.fuel.2022.126488 DOI: https://doi.org/10.1016/j.fuel.2022.126488
Zhai, J., Li, X., Li, W., Rahaman, M. H., Zhao, Y., Wei, B., & Wei, H. (2017). Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecological Engineering, 108, 83–92. https://doi.org/10.1016/j.ecoleng.2017.07.023 DOI: https://doi.org/10.1016/j.ecoleng.2017.07.023
Zhou, W., Li, Y., Gao, Y., & Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245, 10–17. https://doi.org/10.1016/j.biortech.2017.08.160 DOI: https://doi.org/10.1016/j.biortech.2017.08.160
Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47(13), 4294–4302. https://doi.org/10.1016/j.watres.2013.05.004 DOI: https://doi.org/10.1016/j.watres.2013.05.004
Zhuang, L. L., Yu, D., Zhang, J., Liu, F. fei, Wu, Y. H., Zhang, T. Y., Dao, G. H., & Hu, H. Y. (2018). The characteristics and influencing factors of the attached microalgae cultivation: A review. Renewable and Sustainable Energy Reviews, 94, 1110–1119. Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.06.006 DOI: https://doi.org/10.1016/j.rser.2018.06.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.