Antifungal activity of microalgae in phytopathogenic fungi: A systematic review

Authors

DOI:

https://doi.org/10.5902/2179460X84584

Keywords:

Agriculture, Antifungal activity, Phytopathogens, Fungi, Microalgae

Abstract

Phytopathogenic fungi are a group of organisms that cause diseases in plants through disturbances in their cellular metabolism. They have major impacts on agriculture, accounting for 8 - 40% of the losses in world agricultural production. Meanwhile, microalgae synthesize a wide variety of allelopathic chemicals and can be used for different biocidal purposes, including antifungal. The objective of this study was to review the antifungal activity of microalgal extracts and their compounds against phytopathogenic fungi. This systematic review of the literature was conducted using SciELO, PubMed, and Periódicos Capes (Scopus). Following the search, 25 articles published in English and Portuguese were selected. Several publications will be recorded from 2015 to 2022. Eight microalgal phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Miozoa, Ochrophyta, Prasinodermatophyta, and Rhodophyta) were detected, with Chlorophyta and Cyanobacteria having the highest number of registered publications. The most tested species of phytopathogenic fungi were Aspergillus niger and Botrytis cinerea. Regarding the categorized inhibition classification for the assays, high inhibition was observed in 31.26% of the trials. Studies performed with cyanobacterial species showed a higher proportion of high inhibition (41.36%) of phytopathogens. Given the high degree of biodiversity of microalgae and their wide range of associated bioactive molecules, this is a vast field to explore for novel biopesticides with antifungal potential.

Downloads

Download data is not yet available.

Author Biographies

Vivian Marina Gomes Barbosa Lage, Universidade Federal da Bahia

PhD in Biotechnology from the Federal University of Bahia (UFBA). Researcher at the Bioprospecting and Biotechnology Laboratory (LABBIOTEC) of the UFBA Biology Institute.

Kathleen Ramos Deegan, Universidade Federal da Bahia

PhD in Sciences (Zoology) from the Postgraduate Program in Animal Science in the Tropics at the Federal University of Bahia (UFBA). Biologist and researcher at the UFBA Veterinary Medicine Hospital.

Rebeca Veloso Sacramento, Universidade Federal da Bahia

Undergraduate student in Biotechnology at the Federal University of Bahia (UFBA).

Daniel Igor Amorim Carvalho dos Santos, Universidade Federal da Bahia

Degree in Veterinary Medicine from the Federal University of Bahia (UFBA).

Luciana Veiga Barbosa, Universidade Federal da Bahia

PhD in Agronomy from the University of São Paulo (USP). Full Professor at the Biology Institute of the Federal University of Bahia (UFBA).

Cristiane de Jesus Barbosa, Brazilian Agricultural Research Corporation - EMBRAPA

PhD in Virology from the Polytechnic University of Valencia. Researcher at Embrapa - Cassava and Fruit Growing.

Suzana Telles da Cunha Lima, Universidade Federal da Bahia

PhD in Plant Biology from the State University of Campinas (UNICAMP). Associate Professor III at the Biology Institute of the Federal University of Bahia (UFBA).

References

Alvarez A.L., Weyers S.L., Goemann H.M., Peyton B.M., Gardner R.D. (2021) Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. https://doi.org/10.1016/j.algal.2021.102200

Anees M., Edel-Hermann V., Steinberg C. (2010) Buildup of patches caused by Rhizoctonia solani. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2010.05.013

Archibaldi J.M., Simpson A.G.B., Slamovits C.H. (2017) Handbook of the Protists. Springer, Boston. https://doi.org/10.1007/978-3-319-28149-0

Balouiri M., Sadiki M., Ibnsouda S.K. (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. https://doi.org/10.1016/j.jpha.2015.11.005

Bashir K.M.I., Lee J.H., Petermann M.J., et al. (2018) Estimation of Antibacterial Properties of Chlorophyta, Rhodophyta and Haptophyta Microalgae Species. Microbiol Biotechnol Lett. https://doi.org/10.4014/mbl.1802.02015

Baudelet P.H., Ricochon G., Linder M., Muniglia L. (2017) A new insight into cell walls of Chlorophyta. Algal Res. https://doi.org/10.1016/j.algal.2017.04.008

Bowles A.M.C., Williamson C.J., Williams T.A., Lenton T.M., Donoghue P.C.J. (2022) The origin and early evolution of plants. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2022.09.009

Brauer V.S., Rezende C.P., Pessoni A.M., et al. (2019) Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules. https://doi.org/10.3390/biom9100521

Carneiro M., Ranglová K., Lakatos G.E., et al. (2021) Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. Algal Res. https://doi.org/10.1016/j.algal.2021.102299

Cepas V., Del-Rio I.G., López Y., et al. (2021) Microalgae and Cyanobacteria Strains as Producers of Lipids with Antibacterial and Antibiofilm Activity. Mar Drugs. https://doi.org/10.3390/md19120675

Chandrasekaran M., Thangavelu B., Chun S.C., Sathiyabama M. (2016) Proteases from phytopathogenic fungi and their importance in phytopathogenicity. J Gen Plant Pathol. https://doi.org/10.1007/s10327.016.0672-9

Costa J.A.V., Freitas B.C.B., Cruz C.G., Silveira J., Morais M.G. (2019) Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J Environ Sci Health. https://doi.org/10.1080/03601.234.2019.1571366

Costa J.A.V., Cassuriaga A.P.A., Moraes L., Morais M.G. (2022) Biosynthesis and potential applications of terpenes produced from microalgae. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2022.101166

Davoodbasha M., Edachery B., Nooruddin T., Lee S.Y., Kim J.W. (2018) An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb Pathog. https://doi.org/10.1016/j.micpath.2017.12.049

Dean R., Kan J.A.L.V., Pretorius Z.A., et al. (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00783.x

El Semary N.A., Mabrouk M. (2013) Molecular characterization of two microalgal strains in Egypt and investigation of the antimicrobial activity of their extracts. Biotechnol Agron Soc Environ 17:312-320

Fábregas J., García D., Fernandez-Alonso M., et al. (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res. https://doi.org/10.1016/S0166-3542(99)00049-2

Falaise C., François C., Travers M.A., et al. (2016) Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Mar Drugs. https://doi.org/10.3390/md14090159

Gallardo-Rodríguez J., Sánchez-Mirón A., García-Camacho F., López-Rosales L., Chisti Y., Molina-Grima E. (2012) Bioactives from microalgal dinoflagellates. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2012.07.005

Hermawan I., Higa M., Hutabarat P.U.B., et al. (2019) Kabirimine, a New Cyclic Imine from an Okinawan Dinoflagellate. Mar Drugs. https://doi.org/10.3390/md17060353

Herrero M., Ibáñez E., Cifuentes A., Reglero G., Santoyo S. (2006) Dunaliella salina Microalga Pressurized Liquid Extracts as Potential Antimicrobials. J Food Prot. https://doi.org/10.4315/0362-028X-69.10.2471

Kashif S.A., Hwang Y.J., Park J.K. (2018) Potent biomedical applications of isolated polysaccharides from marine microalgae Tetraselmis species. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449.018.1987-z

Kaur L. (2019) A review: Top ten fungal pathogens. Int J Res Anal 6:532-542.

Khan M., Salman M., Jan S.A., Shinwari Z.K. (2021) Biological control of fungal phytopathogens: A comprehensive review based on

Bacillus species. MOJ Biol Med. https://doi.org/10.15406/mojbm.2021.06.00137

Kumar J., Ramlal A., Mallick D., Mishra V. (2021) An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants. https://doi.org/10.3390/plants10061185

Lage V.M.G.B., Deegan K.R., Santos G.F., Barbosa C.J., Lima S.T.C. (2022) Biological activity of microalgae in dermatophytes: Review. Res Soc Dev. https://doi.org/10.33448/rsd-v11i11.33404

Leannec-Rialland V., Atanasova V., Chereau S., Tonk-Rügen M., Cabezas-Cruz A., Richard-Forget F. (2022) Use of Defensins to Develop

Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. J Fungi. https://doi.org/10.3390/jof8030229

Martínez K.A., Lauritano C., Druka D., et al. (2019) Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Mar Drugs. https://doi.org/10.3390/md17070385

Mishra J., Arora N.K. (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.12.004

Montalvão S., Demirel Z., Devi B., et al. (2016) Large-scale bioprospecting of cyanobacteria, micro – and macroalgae from the Aegean Sea. N Biotechnol. https://doi.org/10.1016/j.nbt.2016.02.002

Morales-Jiménez M., Gouveia L., Yáñez-Fernández J., Castro-Muñoz R., Barragán-Huerta B.E. (2020) Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film. Coatings. https://doi.org/10.3390/coatings10020120

Murata M.M., Morioka L.R.I., Marques J.B.S., Bosso A., Suguimoto H.H. (2021) What do patents tell us about microalgae in agriculture? AMB Express. https://doi.org/10.1186/s13568.021.01315-4

Nabout J.C., Rocha B.S., Carneiro F.M., Sant’Anna C.L. (2013) How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv. https://doi.org/10.1007/s10531.013.0561-x

Najdenski H.M., Gigova L.G., Iliev I.I., et al. (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.12122

Neto A.C.R., Souza L.S., Angelo E., et al. (2015) Atividade antimicrobiana de extratos etanólicos de algas no controle de Penicillium expansum Link (Trichocomaceae, Ascomycota). Biotemas. https://doi.org/10.5007/2175-7925.2015v28n4p23

Omran B.A., Baek K.H. (2022) Control of phytopathogens using sustainable biogenic nanomaterials: Recent perspectives, ecological safety, and challenging gaps. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.133729

Ons L., Bylemans D., Thevissen K., Cammue B.P.A. (2020) Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms. https://doi.org/10.3390/microorganisms8121930

Patil L., Kaliwal B.B. (2019) Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449.019.02099-5

Pawar S.T., Puranik P.R. (2008) Screening of terrestrial and freshwater halotolerant cyanobacteria for antifungal activities. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274.007.9565-6

Peraman M., Nachimuthu S. (2019) Identification and Quantification of Fucoxanthin in Selected Carotenoid-Producing Marine Microalgae and Evaluation for their Chemotherapeutic Potential. Pharmacogn Mag 15:243-249

Perrone G., Susca A., Cozzi G., et al. (2007) Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol. https://doi.org/10.3114/sim.2007.59.07

Qasem W.M.A., Mohamed E.A., Hamed A.A., El-Sayed A.E.B., El-Din R.A.S. (2016) Antimicrobial and Anticancer Activity of Some Microalgae Species. Egypt J Phycol. https://doi.org/10.21608/egyjs.2016.115978

Ranglová K., Lakatos G.E., Manoel J.A.C., et al. (2021) Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. https://doi.org/10.1016/j.algal.2020.102136

Righini H., Francioso O., Di Foggia M., Quintana A.M., Roberti R. (2021) Assessing the Potential of the Terrestrial Cyanobacterium Anabaena minutissima for Controlling Botrytis cinerea on Tomato Fruits. Horticulturae. https://doi.org/10.3390/horticulturae7080210

Righini H., Francioso O., Di Foggia M., Quintana A.M., Roberti R. (2020) Preliminary Study on the Activity of Phycobiliproteins against Botrytis cinerea. Mar Drugs. https://doi.org/10.3390/md18120600

Righini H., Francioso O., Quintana A.M., Roberti R. (2022) Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. Horticulture. https://doi.org/10.3390/horticulturae8010058

Rio-Garati A.D., Garcia-Mosaica C. (2022) Antimicrobial activity of marine microalgae: Isochrysis galbana, Isochrysis litoralis and Isochrysis maritima. J Anal Sci Appl Biotechnol. https://doi.org/10.48402/IMIST.PRSM/jasab-v4i2.39137

Rodríguez-Meizoso I., Jaime L., Santoyo S., et al. (2008) Pressurized Fluid Extraction of Bioactive Compounds from Phormidium Species. J Agric Food Chem. https://doi.org/10.1021/jf703719p

Saeed M.U., Hussain N., Shahbaz A., Hameed T., Iqbal H.M.N., Bilal M. (2022) Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications. J Basic Microbiol. https://doi.org/10.1002/jobm.202100445

Santoyo S., Rodríguez-Meizoso I., Cifuentes A., et al. (2009) Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT – Food Sci Technol. https://doi.org/10.1016/j.lwt.2009.01.012

Satake M., Cornelio K., Hanashima S., et al. (2017) Structures of the Largest Amphidinol Homologues from the Dinoflagellate Amphidinium carterae and Structure–Activity Relationships. J Nat Prod. https://doi.org/10.1021/acs.jnatprod.7b00345

Scaglioni P.T., Garcia S.O., Badiale-Furlong E. (2019) Inhibition of in vitro trichothecenes production by microalgae phenolic extracts. Food Res Int. https://doi.org/10.1016/j.foodres.2018.07.008

Scaglioni P.T., Pagnussatt F.A., Lemos A.C., Nicolli C.P., Del Ponte E.M., BadialeFurlong E. (2019) Nannochloropsis sp. and Spirulina sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium graminearum Species Complex. Curr Microbiol.

https://doi.org/10.1007/s00284.019.01663-2

Schmid B., Coelho L., Schulze P.S.C., et al. (2022) Antifungal properties of aqueous microalgal extracts. Bioresour Technol Rep.

https://doi.org/10.1016/j.biteb.2022.101096

Senousy H.H., El-Sheekh M.M., Saber A.A., et al. (2022) Biochemical Analyses of Ten Cyanobacterial and Microalgal Strains Isolated from Egyptian Habitats, and Screening for Their Potential against Some Selected Phytopathogenic Fungal Strains. Agronomy. https://doi.org/10.3390/agronomy12061340

Sexton J.P., Lomas M.W. (2018) Microalgal Systematics. In: Levine I, Fleurence J (eds) Microalgae in Health and Disease Prevention. Academic Press, Cambridge, pp 73-107

Silberfeld T., Rousseau F., Reviers B. (2014) An updated classification of brown algae (Ochrophyta, Phaeophyceae). Algologie. https://doi.org/10.7872/crya.v35.iss2.2014.117

Stirk W.A., Staden J. (2022) Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2022.107977

Sun J., Zhao J., Fu D., Gu S., Wang D. (2017) Extraction, Optimization and Antimicrobial Activity of IWSP from Oleaginous Microalgae Chlamydomonas sp. YB-204. Food Sci Technol Res. https://doi.org/10.3136/fstr.23.819

Suresh A., Praveenkumar R., Thangaraj R., et al. (2014) Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Dis. https://doi.org/10.1016/S2222-1808(14)60769-6

Torres-Bayona C., Rojas J.L., Fernandez R., Prieto-Guevara M., Pulido A., Moreno-Garrido I. (2023) Microalgae and Cyanobacteria, a Promising Source of Antimicrobial Molecules Against Aquatic Pathogen. Turkish J Fish Aquat Sci. https://doi.org/10.4194/TRJFAS21184

Vehapi M., Koçer A.T., Yılmaz A., Özçimen D. (2019) Investigation of the antifungal efects of algal extracts on appleinfecting fungi. Arch Microbiol. https://doi.org/10.1007/s00203.019.01760-7

Verweij P.E., Arendrup M.C., Alastruey-Izquierdo A., et al. (2022) Dual use of antifungals in medicine and agriculture: How do we help prevent resistance developing in human pathogens? Drug Resist Updat. https://doi.org/10.1016/j.drup.2022.100885

Vicente T.F.L., Lemos M.F.L., Félix R., Valentão P., Félix C. (2021) Marine Macroalgae, a Source of Natural Inhibitors of Fungal Phytopathogens. J Fungi. https://doi.org/10.3390/jof7121006

Washida K., Koyama T., Yamada K., Kita M., Uemura D. (2006) Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2006.02.045

Yanuhar U., Nurdiani R., Hertika A.M.S. (2011) Potency of Nannochloropsis oculata as Antibacterial, Antioxidant and Antiviral on Humpback Grouper Infected by Vibrio alginolyticus and Viral Nervous Necrotic. J Food Sci Eng 5:323-330

Yim J.H., Kim S.J., Ahn S.H., Lee C.K., Rhie K.T., Lee H.K. (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol. https://doi.org/10.1007/s10126.003.0002-z

Zahra Z., Choo D.H., Lee H., Parveen A. (2020) Cyanobacteria: Review of current potentials and applications. Environments. https://doi.org/10.3390/environments7020013

Zielinski D., Fraczyk J., Debowski M., et al. (2020) Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage. Molecules. https://doi.org/10.3390/molecules25081790

Published

2024-10-17

How to Cite

Lage, V. M. G. B., Deegan, K. R., Sacramento, R. V., Santos, D. I. A. C. dos, Barbosa, L. V., Barbosa, C. de J., & Lima, S. T. da C. (2024). Antifungal activity of microalgae in phytopathogenic fungi: A systematic review. Ciência E Natura, 46, e84584. https://doi.org/10.5902/2179460X84584