Magnetic hysteresis in systems presenting perpendicular anisotropy and Dzyaloshinskii-Moriya interaction

Authors

DOI:

https://doi.org/10.5902/2179460X84494

Keywords:

Magnetization reversal mechanisms, Interfacial Dzyaloshinskii–Moriya interaction, Magnetic hysteresis, Magnetic skyrmions

Abstract

Micromagnetic calculations were performed to study the impact of interfacial Dzyaloshinskii–Moriyainteraction (iDMI) on the magnetization reversal process of thin films presenting perpendicular magnetic anisotropy (PMA). Systems characterized by low, intermediary or high PMA were explored. As the parameter that controls the intensity of iDMI is increased, significant modifications in the magnetization loops may be observed, mainly associated with the emergence of magnetic domains. Analysing the magnetization spatial distribution, it is verified that the formation of Néel type domain walls and magnetic skyrmions are favored by iDMI.

Downloads

Download data is not yet available.

Author Biographies

Heloísa Suffert Acosta, Universidade Federal do Rio Grande do Sul

Master's student, Institut of Physics

Bruno Monteiro Figueiró, Universidade Federal de Santa Maria

M Sc. in Physics

Artur Harres de Oliveira, Universidade Federal de Santa Maria

PhD in Physics from Universidade Federal do Rio Grande do Sul(2014).

References

Ang, C. C. I., Gan, W., Wong, G. D. H., & Lew, W. S. (2021). Temperature-modulated magnetic skyrmion phases and transformations analysis from first-order reversal curve study. Physical Review B, 103, 144409. Recovered from: https://doi.org/10.1103/PhysRevB.103.144409.

Bernand-Mantel, A., Camosi, L., Wartelle, A., Rougemaille, N., Darques, M., & Ranno, L. (2018). The skyrmion-bubble transition in a ferromagnetic thin film. SciPost Phys.,4, 027. Recovered from: https://doi.org/10.21468/SciPostPhys.4.5.027:027.

Boulle, O., Vogel, J., Yang, H., Pizzini, S., Chaves, D. S., Locatelli, A., Mentes¸ , T. O., & Gaudin, G. (2016). Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nature Nanotechnology, 11, 449-454. Recovered from: https://doi.org/10.1038/nnano.2015.315.

Brand˜ao, J., Dugato, D. A., Seeger, R. L., Denardin, J. C., Mori, T. J. A., & Cezar, J. C. (2019). Observation of magnetic skyrmions in unpatterned symmetric multilayers at room temperature and zero magnetic field. Scientific Reports, 9, 4144. Recovered from: https://doi.org/10.1038/s41598-019-40705-4.

Chen, G., Mascaraque, A., N’Diaye, A. T., & Schmid, A. K. (2015). Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Applied Physics Letters, 106, 242404. Recovered from: https://doi.org/10.1063/1.4922726.

Coey, J. M. D. (2010). Magnetism and Magnetic Materials. Cambridge University Press.

Davies, J. E., Hellwig, O., Fullerton, E. E., Denbeaux, G., Kortright, J. B., & Liu, K. (2004). Magnetization reversal of Co/Pt multilayers: Microscopic origin of high- field magnetic irreversibility. Physical Review B, 70, 224434. Recovered from: https://doi.org/10.1103/PhysRevB.70.224434.

Duong, N. K., Raju, M., Petrovi´c, A. P., Tomasello, R., Finocchio, G., & Panagopoulos, C. (2019). Stabilizing zero-field skyrmions in Ir/Fe/Co/Pt thin film multilayers by magnetic history control. Applied Physics Letters, 114, 072401. Recovered from: https://doi.org/10.1063/1.5080713.

Dzyaloshinskii, I. (1958). A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 4241. Recovered from: https://doi.org/10.1016/0022-3697(58)90076-3.

Fert, A., Cros, V., & Sampaio, J. (2013). Skyrmions on the track. Nature Nanotechnology, 8, 152-156. Recovered from: https://doi.org/10.1038/nnano.2013.29.

Fert, A., Reyren, N., & Cros, V. (2017). Topological properties and dynamics of magnetic skyrmions. Nature Reviews Materials, 2, 17031. Recovered from: https://doi.org/10.1038/natrevmats.2017.31.

Harres, A., Mikhov, M., Skumryev, V., de Andrade, A., Schmidt, J., &Geshev, J. (2016). Criteria for saturated magnetization loop. Journal

of Magnetism and Magnetic Materials, 402, 76-82. Recovered from:https://doi.org/10.1016/j.jmmm.2015.11.046.

Heide, M., Bihlmayer, G., & Bl¨ugel, S. (2008). Dzyaloshinskii-moriya interactionaccounting for the orientation of magnetic domains in ultrathin

films: Fe/W(110). Physical Review B, 78, 140403(R). Recovered from: https://doi.org/10.1103/PhysRevB.78.140403.

Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., & Bl¨ugel, S. (2011). Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Physics, 7, 713–718. Recovered from: https://doi.org/10.1038/nphys2045.

Hellwig, O., Berger, A., Kortright, J. B., & Fullerton, E. E. (2007). Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. Journal of Magnetism and Magnetic Materials, 319(1), 13-55. Recovered from: https://doi.org/10.1016/j.jmmm.2007.04.035.

Hrabec, A., Porter, N. A., Wells, A., Benitez, M. J., Burnell, G., S. McVitie, D. M., Moore, T. A., & Marrows, C. H. (2014). Measuring and tailoring the dzyaloshinskii- moriya interaction in perpendicularly magnetized thin films. Physical Review B, 90, 020402(R). Recovered from: https://doi.org/10.1103/PhysRevB.90.020402.

Krause, S. & Wiesendanger, R. (2016). Skyrmionics gets hot. Nature Materials, 15, 493- 494. Recovered from: https://doi.org/10.1038/nmat4615.

Leliaert, J., de Wiele, B. V., Vansteenkiste, A., Laurson, L., Durin, G., Dupr´e, L., & Waeyenberge, B. V. (2014). Current-driven domain wall mobility in polycrystalline permalloy nanowires: A numerical study. Journal of Applied Physics, 115, 233903. Recovered from: https://doi.org/10.1063/1.4883297.

Moriya, T. (1960). Anisotropic superexchange interaction and weak ferromagnetism. Physical Review, 120, 91. Recovered from: https://doi.org/10.1103/PhysRev.120.91.

Mulkers, J., Waeyenberge, B. V., & Miloˇsevi´c, M. V. (2017). Effects of spatially engineered dzyaloshinskii-moriya interaction in ferromagnetic films. Physical Review B, 95, 144401. Recovered from: https://doi.org/10.1103/PhysRevB.95.144401.

M´alek, Z. & Kambersk´y, V. (1958). On the theory of the domain structure of thin films of magnetically uni-axial materials. Cechoslovackij fiziceskij zurnal, 8, 416-421. Recovered from: https://doi.org/10.1007/BF01612066.

M¨uhlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., & B¨oni, P. (2009). Skyrmion lattice in a chiral magnet. Science, 323, 915-919. Recovered from: https://doi.org/10.1126/science.1166767.

Nagaosa, N. & Tokura, Y. (2013). Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology, 8, 899-911. Recovered from: https://doi.org/10.1038/NNANO.2013.243.

Sampaio, J., Cros, V., Rohart, S., Thiaville, A., & Fert, A. (2013). Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotechnology, 8, 839-844. Recovered from: https://doi.org/10.1038/nnano.2013.210.

Skorokhodov, E., Sapozhnikov, M., Ermolaeva, O., Gusev, N., Fraerman, A., & Mironov, V. (2021). Magnetic resonance force spectroscopy of multilayer films Co/Pt with perpendicular magnetic anisotropy. Journal of Magnetism and Magnetic Materials,518, 167396. Recovered from: https://doi.org/10.1016/j.jmmm.2020.167396.

Soumyanarayanan, A., Raju, M., Oyarce, A. L. G., Tan, A. K. C., Im, M.-Y., Petrovi´c, A. P., Ho, P., Khoo, K. H., Tran, M., Gan, C. K., Ernult, F., & Panagopoulos, C. (2017). Tunable room-temperature magnetic skyrmions in ir/fe/co/pt multilayers. Nature Materials, 16, 898-904. Recovered from: https://doi.org/10.1038/nmat4934.

Tejo, F., Toneto, D., Oyarz´un, S., Hermosilla, J., Danna, C. S., Palma, J. L., da Silva, R. B., Dorneles, L. S., & Denardin, J. C. (2020). Stabilization of magnetic skyrmions on arrays of self-assembled hexagonal nanodomes for magnetic recording

applications. ACS Applied Materials & Interfaces, 12(47), 53454-53461. Recovered from: https://doi.org/10.1021/acsami.0c14350.

Thiaville, A., Rohart, S., ´Emilie Ju´e, Cros, V., & Fert, A. (2012). Dynamics of dzyaloshinskii domain walls in ultrathin magnetic films. Journal of Magnetism and Magnetic Materials, 100(5), 57002. Recovered from: https://doi.org/10.1209/0295- 5075/100/57002.

Tudu, B. & Tiwari, A. (2017). Recent developments in perpendicular magnetic anisotropy

thin films for data storage applications. Vacuum, 146:329–341.

Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., & Waeyenberge, B. V. (2014). The design and verification of mumax3. AIP Advances, 4, 107133. Recovered from: https://doi.org/10.1063/1.4899186.

Wei, Y., Liu, C., Zeng, Z., Wang, X., Wang, J., & Liu, Q. (2021). Room-temperature zero field and high-density skyrmions in Pd/Co/Pd multilayer

films. Journal of Magnetism and Magnetic Materials, 521, 167507. doi: https://doi.org/10.1016/j.jmmm.2020.167507.

Woo, S., Litzius, K., Kr¨uger, B., Im, M.-Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R. M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.-A., Fischer, P., Kl¨aui, M., & Beach, G. S. D. (2016). Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nature Materials, 15, 501-506. Recovered from: https://doi.org/10.1038/nmat4593.

Yim, H. I., Park, J. S., Hwang, J. Y., Lee, S. B., & Kim, T. W. (2004). Perpendicular magnetic anisotropy of CoSiB/Pt multilayers. Journal of the Korean Physical Society, 70, 224434. Recovered from: https://doi.org/10.3938/jkps.57.1672.

Yu, G., Jenkins, A., Ma, X., Razavi, S. A., He, C., Yin, G., Shao, Q., & ... Wang, K. L. (2018). Room-temperature skyrmions in an antiferromagnet-

based heterostructure. Nano Letters, 18, 980-986. Recovered from: https://doi.org/10.1021/acs.nanolett.7b04400.

Yu, G., Upadhyaya, P., Shao, Q., Wu, H., Yin, G., Li, X., He, C., & ... Wang, K. L. (2017). Room-temperature skyrmion shift device for memory application. Nano Letters, 17, 261-268. Recovered from: https://doi.org/10.1021/acs.nanolett.6b04010.

Yu, X. Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W. Z., Ishiwata, S., Matsui, Y., & Tokura, Y. (2011). Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet fege. Nature Materials, 10, 106-109. Recovered from: https://doi.org/10.1038/nmat2916.

Yu, X. Z., Onose, Y., Kanazawa, N., Park, J. H., Han, J. H., Matsui, Y., Nagaosa, N., & Tokura, Y. (2010). Real-space observation of a two-dimensional skyrmion crystal. Nature, 465:901–904.

Zhang, X., Zhao, G. P., Fangohr, H., Liu, J. P., Xia, W. X., Xia, J., & Morvan, F. J. (2015). Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion- based racetrack memory. Scientific Reports, 5, 7643. Recovered from: https://doi.org/10.1038/srep07643.

Downloads

Published

2024-12-13

How to Cite

Acosta, H. S., Figueiró, B. M., & Oliveira, A. H. de. (2024). Magnetic hysteresis in systems presenting perpendicular anisotropy and Dzyaloshinskii-Moriya interaction. Ciência E Natura, 46. https://doi.org/10.5902/2179460X84494