Adsorption study of micropollutants by biosorbents from different rice harvest residues for large scale applications
DOI:
https://doi.org/10.5902/2179460X80262Keywords:
Sustainability, Water purification, Water filtersAbstract
A large-scale removal of micropollutants from residual waters is an urgent problem to be tackled. In this work, three biomasses from agricultural residues, produced by different processes, were compared in terms of the adsorption efficiency of toxic species in water. The biosorbents used were rice husk ashes (RHA), leached rice husk silica (SRHA), and rice straw ashes (RSA). Two representatives of the most common micropollutants present in the effluent waters, 2-nitrophenol and the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D), were chosen as probing molecules. The biosorbents were characterized by SEM, X-Ray FRX, FT-IR, BET, pHcpz, and hydrophobicity; surface areas of 175.81 m2 g-1(SRHA), 66.11 m2 g-1 (RHA) and 42.77 m2 g-1 (RSA) were found, together with a microporous morphology. Firstly, the efficiency of removal was evaluated through adsorption isotherms: RHA and SRHA proved to be more efficient, with an adsorption capacity of 29.14 mg g-1 and 23.75 mg g-1 of 2-nitrophenol and 10.82 mg g-1 and 10.55 mg g-1 for 2,4-D. In particular, the removal of more than 90% for both 2-Nitrophenol and 2,4-D stands out as a very promising result. In light of these results, pillow-shaped filters with RHA were fabricated and tested for the first time for 2-Nitrophenol removal on a larger scale. The positive outcome (removal efficiency of 73%) demonstrates the possibility of producing filters based on sustainable and cheap biosorbents that could be implemented industrially to improve water purification as well as to implement the concept of circular economy.
Downloads
References
Abadi, M. H., Delbari, A., Fakoor, Z., & Baedi, J. (2014). Shahrokh et al. Effects of annealing temperature on infrared spectra of SiO2 extracted from rice husk. J Ceram Sci Technol, 6(1), 41- 46. doi: 10.4416/JCST2014-00028
Abaide, E. R., Dotto, G. L., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Adsorption of 2– nitrophenol using rice straw and rice husks hydrolyzed by subcritical water. Bioresource technology, 284, 25-35. doi: https://doi.org/10.1016/j.biortech.2019.03.110 DOI: https://doi.org/10.1016/j.biortech.2019.03.110
Adib, F., Bagreev, A.; & Bandosz, T. J. (1999) Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide. Journal of colloid and interface science, 214(2), 407-415. doi: https://doi.org/10.1006/jcis.1999.6200 DOI: https://doi.org/10.1006/jcis.1999.6200
Ahmaruzzaman, M., & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research, 50(24), 13589- 13613. doi: https://doi.org/10.1021/ie201477c DOI: https://doi.org/10.1021/ie201477c
Alinnor, L., J., & Nwachukwu, M. (2011). A study on removal characteristics of para-nitrophenol from aqueous solution by fly ash. Journal of Environmental Chemistry and Ecotoxicology, 3(2), 32. doi: https://doi.org/10.5897/JECE.9000002
ANDRADE, C. A., Zambrano-Intriago, L. A., Oliveira, N. S., Vieira, J. S., Quiroz-Fernández, L. S., & Rodríguez-Díaz, J. M. (2020). Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process. Water Air Soil Pollution, 231(103). doi: https://doi.org/10.1007/s11270-020-04473-6 DOI: https://doi.org/10.1007/s11270-020-04473-6
Andreola, F., Barbieri, L., & Lancellotti, I. (2020). The environmental friendly route to obtain sodium silicate solution from rice husk ash: a comparative study with commercial silicates deflocculating agents. Waste and Biomass Valorization, 11, 6295-6305. doi: https://doi.org/10.1007/s12649-019-00849-w DOI: https://doi.org/10.1007/s12649-019-00849-w
Aragaw, T. A., Bogale, F. M. (2021). Biomass-based adsorbents for removal of dyes from wastewater: a review. Frontiers in Environmental Science, 9, 558. doi: https://doi.org/10.3389/ fenvs.2021.764958 DOI: https://doi.org/10.3389/fenvs.2021.764958
Arefieva, O. D., Zemnukhova, L. A., Morgun, N. P., Rybin, V. G., Tsvetnov, M. A., Kovshun, A. A., & Panasenko, A. E. (2015). Removal of (2, 4-dichlorophenoxy) acetic acid from aqueous solutions using low-cost sorbents. Air, soil and water research, 8(1), ASWR. S31623. doi: https://doi.org/10.1177/ASWR.S31623 DOI: https://doi.org/10.4137/ASWR.S31623
Baysal, G., Uzun, D., & Hasdemir, E. (2020). The fabrication of a new modified pencil graphite electrode for the electrocatalytic reduction of 2-nitrophenol in water samples, Journal of Electroanalytical Chemistry, 860, 113893. doi: https://doi.org/10.1016/j.jelechem.2020.113893 DOI: https://doi.org/10.1016/j.jelechem.2020.113893
Boakye, P., Ohemeng-Boahen, G., Darkwah, L., Sokama-Neuyam, Y. A., Appiah-Effah, E., Oduro- Kwarteng, Asilevi, B. A. O. J., & Woo, S. H. (2022). Waste Biomass and Biomaterials Adsorbents for Wastewater Treatment. Green Energy. doi: 10.5772/GEET.05 DOI: https://doi.org/10.5772/geet.05
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme research, 2011. doi: https://doi.org/10.4061/2011/787532 DOI: https://doi.org/10.4061/2011/787532
Caicedo, D. F., Reis, G. S. dos, Lima, E. C., De Brum, I. A. S., Thue, P. S., Cazacliu, B. G., Lima, D. R., Santos, A. H. dos, & Dotto, G. L. (2020). Efficient adsorbent based on construction and demolition wastes functionalized with 3-aminopropyltriethoxysilane (APTES) for the removal ciprofloxacin from hospital synthetic effluents. Journal of Environmental Chemical Engineering, 8(4), 103875. doi: https://doi.org/10.1016/j.jece.2020.103875 DOI: https://doi.org/10.1016/j.jece.2020.103875
Carvalho, L. M., Soares-Filho, A. F., Lima, M. S., Cruz-Filho, J. F., Dantas, T. C. M., & Luz Jr., G. E. (2021). 2,4-Dichlorophenoxyacetic acid (2,4-D) photodegradation on WO3-TiO2-SBA-15 nanostructured composite. Environmental Science Pollution Research, 28, 7774. doi: https://doi.org/10.1007/s11356-020-11085-4 DOI: https://doi.org/10.1007/s11356-020-11085-4
Cheah, W. K., Ooi, C. H., & Yeoh, F. Y. (2016). Rice husk and rice husk ashf reutilization into nanoporous materials for adsorptive biomedical applications: A review. Open Material Sciences, 3(1). doi: https://doi.org/10.1515/mesbi-2016-0004 DOI: https://doi.org/10.1515/mesbi-2016-0004
Costa, J. A. S. Paranhos, C. M. (2019). Evaluation of rice husk ash in adsorption of Remazol Red dye from aqueous media. SN Applied Science, 1(397). doi: https://doi.org/10.1007/s42452-019- 0436-1 DOI: https://doi.org/10.1007/s42452-019-0436-1
Cunha, M. R., Lima, E. C., Cimirro, N. F. G. M., Thue, P. S., Dias, S. L. P., Gelesky, M. A., Dotto, G. L., Reis, G. S. dos, & Pavan, F. A. (2018). Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions. Environmental Science and Pollution Research, 25, 23315-23327. doi: https://doi.org/10.1007/s11356-018-2439-7 DOI: https://doi.org/10.1007/s11356-018-2439-7
Daffalla, S. B., Mukhtar, H., & Shaharun, M. S. (2010). Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption. Journal of Applied Sciences, 10, 1060-1067. doi: 10.3923/jas.2010.1060.1067 DOI: https://doi.org/10.3923/jas.2010.1060.1067
Daffalla, S. B., Mukhtar, H., & Shaharun, M. S. (2020). Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems. PloS one, 15(12), e0243540. doi: https://doi.org/10.1371/journal.pone.0243540 DOI: https://doi.org/10.1371/journal.pone.0243540
de OLIVEIRA, F. F., Moura, K. O., Costa, L. S., Vidal, C. B., Loiola, A. R., & do Nascimento, R. F. (2020) Reactive Adsorption of Parabens on Synthesized Micro- and Mesoporous Silica from Coal Fly Ash: pH Effect on the Modification Process. ACS Omega, 5(7), 3346. doi: https://doi.org/10.1021/acsomega.9b03537 DOI: https://doi.org/10.1021/acsomega.9b03537
Deokar, S. K., & Mandavgane, S. A. (2015). Estimation of packed-bed parameters and prediction of breakthrough curves for adsorptive removal of 2, 4-dichlorophenoxyacetic acid using rice husk ash. Journal of environmental chemical engineering, 3(3),1827-1836. doi: https://doi.org/10.1016/j.jece.2015.06.025 DOI: https://doi.org/10.1016/j.jece.2015.06.025
Dhaneswara, D., Fatriansyah, J. F., Situmorang, F. W., & Haqoh, A. N. (2020). Synthesis of amorphous silica from rice husk ash: comparing HCl and CH3COOH acidification methods and various alkaline concentrations. Synthesis, 11(1), 200-208. doi: https://doi.org/10.14716/ijtech. v11i1.3335 DOI: https://doi.org/10.14716/ijtech.v11i1.3335
Dos Reis, G. S., Sampaio, C. H., Lima, E. C., & Wilhelm, M. (2016a). Preparation of novel adsorbents based on combinations of polysiloxanes and sewage sludge to remove pharmaceuticals from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 304- 315. doi: https://doi.org/10.1016/j.colsurfa.2016.03.021 DOI: https://doi.org/10.1016/j.colsurfa.2016.03.021
Dos Reis, G. S., Wilhelm, M., Silva, T. C. de A., Rezwan, K., Sampaio, C. H., Lima, E. C., & Souza, S. M. A. G. U. de (2016b). The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis. Applied Thermal Engineering, 93, 590-597. doi: https://doi.org/10.1016/j. applthermaleng.2015.09.035 DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.035
Dubey, R., Gunasekaran, A., Papadopoulos, T., Childe, S. J., Shibin, K. T., & Wamba, S. F. (2017). Sustainable supply chain management: framework and further research directions. Journal of cleaner production, 142, 1119-1130. doi: https://doi.org/10.1016/j.jclepro.2016.03.117 DOI: https://doi.org/10.1016/j.jclepro.2016.03.117
Gonçalves, J., Silva, G. da, Lima, L., Morgado, D., Nalin, M., Armas, L. E. G., Valsecchi, & Menezes, J. W. (2020). Production of transparent soda-lime glass from rice husk containing iron and manganese impurities. Ceramics, 3(4), 494-506. doi: https://doi.org/10.3390/ceramics3040040 DOI: https://doi.org/10.3390/ceramics3040040
Hossain, SK S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. Journal of Asian Ceramic Societies, 6(4), 299-313. doi: https://doi.org/10.1080/21870764.2018.1539210 DOI: https://doi.org/10.1080/21870764.2018.1539210
Faisal, I., Farooq, M. A., Khan, M. S. S., Xu, L., Zhu, J., Zhao, M., Muños, S., Li, Q., & Zhou, W. (2018). Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International,111, 332. doi: https://doi.org/10.1016/j.envint.2017.10.020 DOI: https://doi.org/10.1016/j.envint.2017.10.020
Khan, M. M., Khan, A., Bhatti, H. N., Zahid, M., Alissa, S. A., El-Badry, Y., Hussein, E. E., & Iqbal, M. (2021). Composite of polypyrrole with sugarcane bagasse cellulosic biomass and adsorption efficiency for 2, 4-dicholrophonxy acetic acid in column mode. Journal of Materials Research and Technology, 15, 2016-2025. doi: https://doi.org/10.1016/j.jmrt.2021.09.028 DOI: https://doi.org/10.1016/j.jmrt.2021.09.028
Kim, M., Yoon, S. H., Choi, E., & Gil, B. (2008). Comparison of the adsorbent performance between rice hull ash and rice hull silica gel according to their structural differences. LWT-Food Science and Technology, 41(4), 701-706. DOI: https://doi.org/10.1016/j.lwt.2007.04.006
Lima, E. C., Adebayo, M. A., & Machado, F. M. (2015). Kinetic and Equilibrium Models of Adsorption. In: Bergmann, C., Machado, F. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Carbon Nanostructures. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-18875-1_3 DOI: https://doi.org/10.1007/978-3-319-18875-1_3
Lima E. C., Dehghani, M. H., Guleria, A., Sher, F., Karri, R. R., Dotto, G. L., & Tran, H. N. (2021). Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, in: Hadi Dehghani, M., Karri, R., Lima, E. (Eds.), Green Technologies for the Defluoridation of Water. Elsevier, 41–88. Doi: https://doi.org/10.1016/B978-0-323-85768-0.00004-X DOI: https://doi.org/10.1016/B978-0-323-85768-0.00004-X
Mandal, A., Mukhopadhyay, P., & Das, S. K. (2019). The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration. SN Applied Sciences, 1, 1-13. doi: https://doi.org/10.1007/s42452-019-0203-3 DOI: https://doi.org/10.1007/s42452-019-0203-3
Matin, H. H. A., Syafrudin, S., & Suherman, S. (2023). Rice Husk Waste: Impact on Environmental Health and Potential as Biogas. Jurnal Kesehatan Masyarakat, 18, 3. doi: https://doi.org/10.15294/kemas.v18i3.42467 DOI: https://doi.org/10.15294/kemas.v18i3.42467
McCormick, K., Neij, L., Mont, O., Ryan, C., Rodhe, H., & Orsato, R. (2016). Advancing sustainable solutions: an interdisciplinary and collaborative research agenda. Journal of Cleaner Production, 123, 1-4. doi: https://doi.org/10.1016/j.jclepro.2016.01.038 DOI: https://doi.org/10.1016/j.jclepro.2016.01.038
Njoku, I. J., Nwaokafor, P., & Okeke, N. K. (2021). Assessment of the contamination of rice husk ash of Izzi CP, Ikwo CP and Izzi R8 rice species of South-Eastern Nigeria. Environmental Challenges, 5, 100232. doi: https://doi.org/10.1016/j.envc.2021.100232 DOI: https://doi.org/10.1016/j.envc.2021.100232
Nunes, F. B., Bruckmann, F. da S., Salles, T. da R., & Rhoden, C. R. B. (2023) Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environmental Science and Pollution Research, 30, 12658. doi: https://doi.org/10.1007/s11356-022-23075-9 DOI: https://doi.org/10.1007/s11356-022-23075-9
ONU, N. U. (2018) The 2030 agenda and the sustainable development goals: An opportunity for Latin America and the Caribbean.
Saceda, J.-J. F., Leon, R. L. de, Rintramee, K., Prayoonpokarach, S., & Wittayakun, J. (2011). Properties of silica from rice husk and rice husk ash and their utilization for zeolite y synthesis. Química Nova, 34(8), 1394. doi: https://doi.org/10.1590/S0100-40422011000800018 DOI: https://doi.org/10.1590/S0100-40422011000800018
Salles, T. da R. et al. (2023). Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment. Separation and Purification Technology, 315. doi: https://doi.org/10.1016/j.seppur.2023.123713 DOI: https://doi.org/10.1016/j.seppur.2023.123713
Sun, N. et al. (2022) Inhibition of polycyclic aromatic hydrocarbon (PAHs) release from sediments in an integrated rice and crab coculture system by rice straw biochar. Journal of Cleaner Production, 367, 133058. doi: https://doi.org/10.1016/j.jclepro.2022.133058 DOI: https://doi.org/10.1016/j.jclepro.2022.133058
Tang, Y., Li, Y., Zhan, L., Wu, D., Zhang, S., Pang, R., & Xie, B. (2022). Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar. Science of the Total Environment, 805, 150158. doi: https://doi.org/10.1016/j. scitotenv.2021.150158 DOI: https://doi.org/10.1016/j.scitotenv.2021.150158
Thue, P. S., Joseph-Marie, S., & Kamga, R. (2013). Physico-chemical studies on the adsorption of atrazine on locally mined montmorillonites, International Jounal in Advanced Research, Engineering and Technology (IJARET), 4, 79.
Thue, P. S., Adebayo, M. A., Lima, E. C., Sieliechi, J. M., Machado, F. M., Dotto, G. L., Vaghetti, J. C. P., & Dias, S. L. P. (2016). Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. Journal of Molecular Liquids, 223, 1067-1080. doi: https://doi.org/10.1016/j.molliq.2016.09.032 DOI: https://doi.org/10.1016/j.molliq.2016.09.032
Usmani, A., Watthaisong, P., Grisdanurak, N., & Suthirakun, S. (2022). Insight into the effect of alkali treatment on enhancing adsorptivity of activated carbon for HCl removal in H2 feedstock. Chemical Papers, 76(7), 4203-4216. doi: https://doi.org/10.1007/s11696-022-02111-5 DOI: https://doi.org/10.1007/s11696-022-02111-5
Vargas, G. O. et al. (2023). Highly furosemide uptake employing magnetic graphene oxide: DFT modeling combined to experimental approach. Journal of Molecular Liquids, 379, 121652. doi: https://doi.org/10.1016/j.molliq.2023.121652 DOI: https://doi.org/10.1016/j.molliq.2023.121652
Wang, J., Lautz, L. S., Nolte, T. M., Posthuma, L., Koopman, K. R., Leuven, R. S. E. W., & Hendriks, A. J. (2021). Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. Journal of Environmental Management, 281, 111873. doi: https://doi.org/10.1016/j.jenvman.2020.111873 DOI: https://doi.org/10.1016/j.jenvman.2020.111873
Wang, S., Li, W., Yin, X., Wamg, N., Yuan, S., Yan, T., Qu, S., Yang, X., & Chen, D. (2019). Cd (II) adsorption on different modified rice straws under FTIR spectroscopy as influenced by Initial pH, Cd (II) concentration, and Ionic strength. International Journal of Environmental Research and Public Health, 16(21), 4129. doi: https://doi.org/10.3390/ijerph16214129 DOI: https://doi.org/10.3390/ijerph16214129
Wasilewska, M., Marczewski, A. W., Deryło-Marczewska, A., & Sternik, D. (2021). Nitrophenols removal from aqueous solutions by activated carbon–temperature effect of adsorption kinetics and equilibrium. Journal of Environmental Chemical Engineering, 9(4), 105459. doi: https://doi.org/10.1016/j.jece.2021.105459 DOI: https://doi.org/10.1016/j.jece.2021.105459
Xue, P., Zhao, Y., Zhao, D., Chi, M., Yin, Y., Xuan, Y., & Wang, X. (2021). Mutagenicity, health risk, and disease burden of exposure to organic micropollutants in water from a drinking water treatment plant in the Yangtze River Delta, China. Ecotoxicology and Environmental Safety, 15(221), 112421. DOI: https://doi.org/10.1016/j.ecoenv.2021.112421
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.