Bioglasses and Bioceramics: a review about their properties

Authors

DOI:

https://doi.org/10.5902/2179460X71468

Keywords:

Bioglasses, Bioceramics, Bioactivity, Properties

Abstract

Studies with bioglass and bioglass ceramics have been gaining prominence due to the development of modern medicine. Many of these works focus on improving properties under conditions of use of these biomaterials. In this sense, this work aims to gather information about the function of each oxide that composes the different bioglasses. A literature review was carried out and information on the characteristics of certain bioglass and bioceramics compositions was gathered. Several articles were analyzed in order to compare the effect of the elements in vivo, the bioactivity index and their mechanical properties, such as fracture toughness, from each composition.

Downloads

Download data is not yet available.

Author Biographies

Bernardo Kappaun de Oliveira, Federal University of Rio Grande do Sul

Student of the Bachelor's degree in Physics.

Naira Maria Balzaretti, Federal University of Rio Grande do Sul

He holds a degree in Physics (1985), a master's degree in Physics (1988) and a PhD in Physics (1995) from UFRGS. Post-Doctorate at the National Institute of Standards and Technology/USA (1996-1997). He currently holds the position of Class E Professor - Full Professor at the Physics Institute of UFRGS. He has experience in the areas of Physics, with an emphasis on Condensed Matter Physics, and Materials Science, working mainly on the following topics: processing and analysis of materials under extreme conditions of pressure and temperature, glass and glass-ceramic materials, Raman and infrared spectroscopy, carbon nanostructures, luminescence in quantum dots and rare earth elements, dyes for revealing latent fingerprints. She is currently Director of the Physics Institute at UFRGS.

Silvio Buchner, Federal University of Rio Grande do Sul

He has a degree in Physics from the Federal University of Santa Maria, a master's degree in Physics from the Federal University of Paraná (2007) and a PhD in Physics from the Federal University of Rio Grande do Sul (2011). Post-Doctorate at the Physics Institute of UFRGS. He is currently an Adjunct Professor at the Department/Institute of Physics at UFRGS. He has experience in the area of ​​Physics, with an emphasis on General Physics, working mainly on the following topics: Physics of Condensed Matter, x-ray diffraction, High Pressures, glasses, Vitroceramics, models of nucleation and growth of crystals, phase transitions, Biomaterials , bioglass, bioglassceramics, structures and properties of glassceramics subjected to extreme conditions of pressure and/or temperatures. 

 

References

Amudha, S., Ramya, J. R., Arul, K. T., Deepika, A., Sathiamurthi, P., Mohana, B., Asokan, K., Dong, C. L., Kalkura, S. N. (2020). Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Com- posites Part B: Engineering, 196, 108,099, URL https://www.sciencedirect.com/science/article/pii/ S1359836819335048.

Arcos, D., Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 6(8), 2874–2888, URL https://www.sciencedirect.com/science/article/pii/S1742706110000735.

Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Rebelo, A. H., Ferreira, J. M. (2007). Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomaterialia, 3(2), 255–262, URL https://www. sciencedirect.com/science/article/pii/S1742706106001255.

Bellantone, M., Coleman, N., Hench, L. (2000). Bacteriostatic Action of a Novel Four-Component Bioactive Glass. Journal of biomedical materials research, 51, 484–90.

Bohner, M., Lemaitre, J. (2009). Can bioactivity be tested in vitro with SBF solution? Biomaterials, 30(12), 2175–2179, URL https://www.sciencedirect.com/science/article/pii/S0142961209000167.

Bromer, H. (1977). Properties of the bioactive implant material ’Ceravital’. Em: Science of Ceramics, 9, Proc. 9 th Int. Conf. held Noordwijkerhout, The Netherlands, Nov. 13-16, 1977. Edited by K. J. de Vries. Rijswijk, Netherlands Keramische Vereniging, 1977., p 219.

Campanini, L. A. (2015). Avaliação da atividade bactericida do biovidro F18 e F18 com prata para aplicações médicas. , URL https://repositorio.ufscar.br/handle/ufscar/7319.

Ciapetti, G., Granchi, D., Verri, E., Savarino, L., Cavedagna, D., Pizzoferrato, A. (1996). Application of a combination of neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. Biomaterials, 17(13), 1259–1264.

Crovace, M. C., Souza, M. T., Chinaglia, C. R., Peitl, O., Zanotto, E. D. (2016). Biosilicate® — A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids, 432, 90–110, URL https: //www.sciencedirect.com/science/article/pii/S0022309315001271.

El-Kady, A. M., Ali, A. F. (2012). Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ce- ramics International, 38(2), 1195–1204, URL https://www.sciencedirect.com/science/article/pii/ S0272884211007607.

Fokin, V. M., Zanotto, E. D., Yuritsyn, N. S., Schmelzer, J. W. (2006). Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. Journal of Non-Crystalline Solids, 352(26), 2681–2714, URL https://www.sciencedirect.com/ science/article/pii/S0022309306005205.

Gamble, J. L. (1954). Chemical anatomy, physiology and pathology of extracellular fluid: a lecture syllabus. Harvard University Press.

Hench, L. L. (1998). Bioceramics. Journal of the American Ceramic Society, 81(7), 1705–1728, URL https://ceramics. onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1998.tb02540.x.

Hench, L. L., Andersson, O. (1993). BIOACTIVE GLASSES. Em: An Introduction to Bioceramics, WORLD SCIENTIFIC, pp. 41–62, URL http://www.worldscientific.com/doi/abs/10.1142/9789814317351_0003.

Hench, L. L., West, J. K. (1990). The sol-gel process. Chemical Reviews, 90(1), 33–72, URL https://doi.org/10.1021/ cr00099a003, publisher: American Chemical Society.

Hench, L. L., Polak, J. M., Xynos, I. D., Buttery, L. D. K. (2000). Bioactive materials to control cell cycle. Material Research Innovations, 3(6), 313–323, URL https://doi.org/10.1007/s100190000055.

Höland, W., Beall, G. (2019). Glass-Ceramic Technology, 3º edn. Wiley, URL https://onlinelibrary.wiley.com/ doi/book/10.1002/9781119423737.

ISO 23317: 2007, Implants for Surgery in vitro Evaluation for Apatite-Forming Ability of Implant Materials.

Jayaswal, G. P., Dange, S. P., Khalikar, A. N. (2010). Bioceramic in dental implants: A review. The Journal of the Indian Prosthodontic

Society, 10(1), 8–12, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453171/.

Jones, J. R., Gentleman, E., Polak, J. (2007). Bioactive Glass Scaffolds for Bone Regeneration. Elements, 3(6), 393–399, URL https://pubs.geoscienceworld.org/elements/article/3/6/393-399/137752.

Khorami, M., Hesaraki, S., Behnamghader, A., Nazarian, H., Shahrabi, S. (2011). In vitro bioactivity and biocompatibility of lithium substituted 45s5 bioglass. Materials Science and Engineering: C, 31(7), 1584–1592, URL https://www. sciencedirect.com/science/article/pii/S0928493111001937.

Kokubo, T., Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915, URL https://www.sciencedirect.com/science/article/pii/S0142961206000457.

Kokubo, T., Ito, S., Tashiro, M. (1974). Formation of Metastable Pyrochlore-Type Crystals in Glasses. Bulletin of the Institute for Chemical Research, Kyoto University, 51(5), 315–328, URL https://repository.kulib.kyoto-u.ac.jp/ dspace/handle/2433/76500.

Lao, J., Jallot, E., Nedelec, J. M. (2008). Strontium-Delivering Glasses with Enhanced Bioactivity: A New Biomaterial for Antios- teoporotic Applications? Chemistry of Materials, 20(15), 4969–4973, URL https://doi.org/10.1021/cm800993s.

de Lima, I. R. (2006). Efeito do zinco na biocompatibilidade in vitro e in vivo de grânulos zinco-apatita 5% em comparação com a hidroxiapatita.

Meunier, P. J., Roux, C., Seeman, E., Ortolani, S., Badurski, J. E., Spector, T. D., Cannata, J., Balogh, A., Lemmel, E. M., Pors-Nielsen, S., Rizzoli, R., Genant, H. K., Reginster, J. Y. (2004). The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. The New England Journal of Medicine, 350(5), 459–468.

Nandi, S., Mahato, A., Kundu, B., Mukherjee, P. (2016). Doped Bioactive Glass Materials in Bone Regeneration.

Oyane, A., Onuma, K., Ito, A., Kim, H. M., Kokubo, T., Nakamura, T. (2003). Formation and growth of clusters in conventional and new kinds of simulated body fluids. Journal of Biomedical Materials Research Part A, 64A(2), 339–348, URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.10426.

Prosidvan (2016). Bioactive glass surface reaction. URL https://ryortho.com/wp-content/uploads/2014/10/ BioGlass_BioactiveGlassSurfaceReaction_WEB.jpg, acesso em: 31.03.2022.

Sepulveda, P., Jones, J. R., Hench, L. L. (2001). Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses. Journal of Biomedical Materials Research, 58(6), 734–740, URL https://onlinelibrary.wiley.com/doi/abs/ 10.1002/jbm.10026.

Siqueira, R. L., Zanotto, E. D. (2011). Biosilicato®: histórico de uma vitrocerâmica brasileira de elevada bioatividade. Química Nova, 34(7), 1231–1241, URL http://www.scielo.br/scielo.php?script=sci_arttext&pid= S0100-40422011000700023&lng=pt&nrm=iso&tlng=en.

Souza, M. T. (2011). Desenvolvimento de manta flexível altamente bioativa. URL https://repositorio.ufscar.br/ handle/ufscar/839.

Takadama, H., Hashimoto, M., Mizuno, M., Kokubo, T. (2004). ROUND-ROBIN TEST OF SBF FOR IN VITRO MEASURE- MENT OF APATITE-FORMING ABILITY OF SYNTHETIC MATERIALS. Phosphorus Research Bulletin, 17, 119–125.

Watts, S., Hill, R., O’Donnell, M., Law, R. (2010). Influence of magnesia on the structure and properties of bioactive glasses. Journal of Non-Crystalline Solids, 356(9), 517–524, URL https://www.sciencedirect.com/science/article/ pii/S0022309309007704.

Weiss, D., Torres, R., Buchner, S., Blunk, S., Soares, P. (2014). Effect of Ti and Mg dopants on the mechanical properties, solubility, and bioactivity in vitro of a Sr-containing phosphate based glass. Journal of Non-Crystalline Solids, 386, 34–38, URL https://www.sciencedirect.com/science/article/pii/S0022309313006200.

Yilmaz, B., Pazarceviren, A. E., Tezcaner, A., Evis, Z. (2020). Historical development of simulated body fluids used in biomedical applications: A review. Microchemical Journal, 155, 104,713, URL https://www.sciencedirect.com/science/ article/pii/S0026265X19330693.

Zanotto, E. D., Ravagnani, C., Filho, O. P., Panzeri, H., LARA, E. H. G. (2004). Procede et compositions permettant de preparer des biosilicates particulaires, bioactifs ou resorbables utilises dans le traitement d’affections orales. URL https: //patents.google.com/patent/WO2004074199A1/fr.

Zhong, J., Greenspan, D. C. (2000). Processing and properties of sol–gel bioactive glasses. Journal of Biomedical Materials Rese- arch, 53(6), 694–701, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4636%282000% 2953%3A6%3C694%3A%3AAID-JBM12%3E3.0.CO%3B2-6.

Published

2023-11-06

How to Cite

Oliveira, B. K. de, Balzaretti, N. M., & Buchner, S. (2023). Bioglasses and Bioceramics: a review about their properties. Ciência E Natura, 45, e28. https://doi.org/10.5902/2179460X71468