Analysis of longitudinal data on child development using trivariate linear mixed models derived from copulas

Authors

DOI:

https://doi.org/10.5902/2179460X70316

Keywords:

Copulas, Longitudinal data, Children's anthropometric indices, Linear mixed models

Abstract

Longitudinal studies are quite common in the area of public health and, consequently, adequate statistical methods are required to analyze the temporal evolution of one or more response variables, separately or simultaneously. Specifying the joint density function of all response variables, as well as their correlation structure, are the main obstacles of multivariate modeling procedures. It is also important to highlight the numerical difficulties often encountered in statistical inference when the response dimension increases. As an alternative, this work presents two proposals to deal with multivariate longitudinal data: (i) a univariate approach, with linear mixed models fitted to each of the response variables separately; and (ii) a joint modeling of these variables, through the use of copula functions. Both methodologies are applied to a set of real trivariate data referring to the nutritional development of children in a Brazilian municipality in the state of Bahia.

Downloads

Author Biographies

Alexandro Oliveira, Universidade Federal da Bahia

Bachelor in Statistics (2013) and Master in Mathematics (with a concentration in Statistics) (2018) from the Federal University of Bahia (UFBA).

Ana Claudia Batista, Universidade Federal da Bahia

Bachelor in Statistics (2014) and Master in Mathematics (with a concentration in Statistics) (2019) from UFBA.

Marisleane Oliveira, Universidade Federal da Bahia

Bachelor in Statistics (2010) and Master in Mathematics (with a concentration in Statistics) (2019) from UFBA.

Paulo Henrique Ferreira, Universidade Federal da Bahia

Bachelor's (2009), Master's (2011) and Doctorate (2015) in Statistics from the Federal University of São Carlos (UFSCar). Post-Doctorate (2020) in Statistics from the Institute of Mathematical and Computer Sciences of the University of São Paulo (ICMC-USP).

Rosemeire Fiaccone, Universidade Federal da Bahia

PhD in Statistics from Lancaster University, UK, in 2006.

References

Akaike, H. (1977). On entropy maximization principle. In Krishnaiah, P.R., Ed. Application of Statistics. (pp. 27-41). Amsterdam: Springer-Verlag.

Arellano-Valle, R., Bolfarine, H., & Lachos, V. H. (2005). Skew-normal linear mixed models. Journal of Data Science, 3(4), 415-438. DOI: https://doi.org/10.6339/JDS.2005.03(4).238

Arnau, J., Bono, R., Blanca, M. J., & Bendayan, R. (2012). Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs. Behavior Research Methods, 44, 1224-1238. DOI: https://doi.org/10.3758/s13428-012-0196-y

Bandyopadhyay, S., Ganguli, B., & Chatterjee, A. (2011). A review of multivariate longitudinal data analysis. Statistical Methods in Medical Research, 20(4), 299-330. DOI: https://doi.org/10.1177/0962280209340191

Bortot, P. (2010). Tail dependence in bivariate skew-normal and skew-t distributions. Recovered from: www2.stat.unibo.it/bortot/ricerca/paper-sn-2.pdf.

Brown, H. & Prescott, R. (2015). Applied Mixed Models in Medicine. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118778210

Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric Analysis of Longitudinal Data in Factorial Experiments. John Wiley & Sons.

Cho, H. (2016). The analysis of multivariate longitudinal data using multivariate marginal models. Journal of Multivariate Analysis, 143, 481-491. DOI: https://doi.org/10.1016/j.jmva.2015.10.012

Demidenko, E. (2013). Mixed Models: Theory and Applications with R. John Wiley & Sons. Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data. (2nd ed). Oxford University Press.

EBA (2014). Consultation Paper, Draft Regulatory Technical Standards on assessment methodologies for the Advanced Measurement Approaches for operational risk under Article 312 of Regulation (EU) No 575/2013. Technical report, European Banking Authority.

Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls Risk Management: Value at Risk and Beyond, 1, 176-223. DOI: https://doi.org/10.1017/CBO9780511615337.008

Fausto, M. A., Carneiro, M., Antunes, C. M. d. F., Pinto, J. A., & Colosimo, E. A. (2008). Mixed linear regression model for longitudinal data: application to an unbalanced anthropometric data set. Cadernos de Sa´ude P´ublica, 24, 513-524. DOI: https://doi.org/10.1590/S0102-311X2008000300005

Ferreira, C. S., Bolfarine, H., & Lachos, V. H. (2022). Linear mixed models based on skew scale mixtures of normal distributions. Communications in Statistics - Simulation and Computation, 51(12), 7194-7214. DOI: https://doi.org/10.1080/03610918.2020.1827265

Ferreira, P. H., Fiaccone, R. L., Lordelo, J. S., Sena, S. O., & Duran, V. R. (2019). Bivariate copula-based linear mixed-effects models: An application to longitudinal child growth data. TEMA (S˜ao Carlos), 20, 37-59. DOI: https://doi.org/10.5540/tema.2019.020.01.37

Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: applicability and limitations. Statistics & Probability Letters, 63(3), 275-286. DOI: https://doi.org/10.1016/S0167-7152(03)00092-0

Frees, E. W., Bolanc´e, C., Guillen, M., & Valdez, E. A. (2021). Dependence modeling of multivariate longitudinal hybrid insurance data with dropout. Expert Systems with Applications, 185, 115552. DOI: https://doi.org/10.1016/j.eswa.2021.115552

Frees, Edward W & Wang, P. (2006). Copula credibility for aggregate loss models. Insurance: Mathematics and Economics, 38(2), 360-373. DOI: https://doi.org/10.1016/j.insmatheco.2005.10.004

Genest, C. & Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347-368. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)

Glogger, S. (2015). Visualization of Trivariate Vine Copulae (Master’s Thesis). Fakult¨at f¨ur Mathematik, Technische Universit¨at M¨unchen, M¨unchen, Deutschland.

Heilpern, S. (2014). Multivariate measures of dependence based on copulas. Mathematical Economics, 10(17), 17-32. DOI: https://doi.org/10.15611/me.2014.10.02

Hofert, M., Kojadinovic, I., M¨achler, M., & Yan, J. (2018). Elements of Copula Modeling with R. Springer. DOI: https://doi.org/10.1007/978-3-319-89635-9

Ida, A., Ishimura, N., & Nakamura, M. (2014). Note on the measures of dependence in terms of copulas. Procedia Economics and Finance, 14, 273-279. DOI: https://doi.org/10.1016/S2212-5671(14)00712-6

Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall. DOI: https://doi.org/10.1201/b17116

Joe, H. & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical Report 166, Department of Statistics.

Kahrari, F., Ferreira, C. S., & Arellano-Valle, R. B. (2019). Skew-normal-cauchy linear mixed models. Sankhya B, 81(2), 185-202. DOI: https://doi.org/10.1007/s13571-018-0173-2

Kim, S. & Kim, D. (2016). Directional Dependence Analysis Using Skew-Normal Copula- Based Regression. Statistics and Causality: Methods for Applied Empirical Research, 131-152. DOI: https://doi.org/10.1002/9781118947074.ch6

Kollo, T., Selart, A., & Visk, H. (2013). From multivariate skewed distributions to copulas. In Bapat, Ravindra B., Kirkland, Steve J., Prasad, K. M. & Puntanen, Simo. (Eds.). Combinatorial Matrix Theory and Generalized Inverses of Matrices. (pp. 63-72). Springer. DOI: https://doi.org/10.1007/978-81-322-1053-5_6

Laird, N. M. & Ware, J. H. (1982). Random-effects models for longitudinal data.Biometrics, 38(4), 963-974. DOI: https://doi.org/10.2307/2529876

Lambert, Philippe & Vandenhende, F. (2002). A copula-based model for multivariate non-normal longitudinal data: analysis of a dose titration safety study on a new antidepressant. Statistics in Medicine, 21(21), 3197-3217. DOI: https://doi.org/10.1002/sim.1249

Li, Feng & Kang, Y. (2018). Improving forecasting performance using covariate-dependent copula models. International Journal of Forecasting, 34(3), 456-476. DOI: https://doi.org/10.1016/j.ijforecast.2018.01.007

Li, Feng & He, Z. (2019). Credit risk clustering in a business group: Which matters more, systematic or idiosyncratic risk?.Cogent Economics & Finance, 7(1), 1632528. DOI: https://doi.org/10.1080/23322039.2019.1632528

Liu, X. (2016). Methods and Applications of Longitudinal Data Analysis. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-801342-7.00002-2

Manner, Hans & Reznikova, O. (2012). A survey on time-varying copulas: specification, simulations, and application. Econometric Reviews, 31(6), 654-687. DOI: https://doi.org/10.1080/07474938.2011.608042

Marcelino, Sandra Denisen do Rocio & Iemma, A. F. (2000). M´etodos de estimação de componentes de variˆancia em modelos mistos desbalanceados. Scientia Agricola, 57(4), 643-652. DOI: https://doi.org/10.1590/S0103-90162000000400008

Molenberghs, Geert & Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer.

Nelsen, R. B. (1996). Nonparametric measures of multivariate association. Lecture Notes - Monograph Series, 223-232. DOI: https://doi.org/10.1214/lnms/1215452621

Nelsen, R. B. (2006). An Introduction to Copulas. Springer Science & Business Media.

Nobre, Juvˆencio S & Singer, J. M. (2007). Residual analysis for linear mixed models. Biometrical Journal, 49(6), 863-875. DOI: https://doi.org/10.1002/bimj.200610341

Nobre, Juvˆencio S & Singer, J. M. (2011). Leverage analysis for linear mixed models.Journal of Applied Statistics, 38(5), 1063-1072. DOI: https://doi.org/10.1080/02664761003759016

Oliveira, A. T. (2018). Modelagem Estat´ıstica para Dados Financeiros Bivariados Utilizando T´ecnicas de An´alise de Sobrevivˆencia e Func¸ ˜oes de C´opula (Dissertac¸ ˜ao de mestrado). Departamento de Estat´ıstica, Universidade Federal da Bahia, Salvador, BA, Brasil.

Panelli-Martins, B. E., Santos, S. M. C. d., & Assis, A. M. O. (2008). Seguranc¸ a alimentar e nutricional: desenvolvimento de indicadores e experimentação em um munic´ıpio da Bahia, Brasil. Revista de Nutric¸ ˜ao, 31, 65s-81s. DOI: https://doi.org/10.1590/S1415-52732008000700007

Patton, A. J. (2009). Copula-based models for financial time series. In Andersen, T. G., Davis, R. A., Kreiß, J. & Mikosch, T. V. Handbook of Financial Time Series. (pp. 767–785). Springer. DOI: https://doi.org/10.1007/978-3-540-71297-8_34

Pinheiro, J. C. & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461–464. DOI: https://doi.org/10.1007/978-1-4419-0318-1

Schweizer, B. & Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9(4), 879–885. DOI: https://doi.org/10.1214/aos/1176345528

Singer, J. M., Rocha, F. M. M., & Nobre, J. S. (2017). Graphical tools for detecting departures from linear mixed model assumptions and some remedial measures. International Statistical Review, 85(2), 290-324. DOI: https://doi.org/10.1111/insr.12178

Sun, J., Frees, E. W., & Rosenberg, M. A. (2008). Heavy-tailed longitudinal data modeling using copulas. Insurance: Mathematics and Economics, 42(2), 817–830. DOI: https://doi.org/10.1016/j.insmatheco.2007.09.009

Team, R. D. C. (2018). Version 3.5.1. Vienna, Austria: R Foundation for Statistical Computing. Recovered from: https://www. r-project. org.

Tibshirani, Robert J & Efron, B. (1993). An Introduction to the Bootstrap. Chapman & Hall. Vaida, F. & Blanchard, S. (2005). Conditional Akaike information for mixed-effectsmodels. Biometrika, 351–370. DOI: https://doi.org/10.1093/biomet/92.2.351

Verbeke, G., Fieuws, S., Molenberghs, G., & Davidian, M. (2014). The analysis ofmultivariate longitudinal data: a review. Statistical Methods in Medical Research, 23(1), 42-59. DOI: https://doi.org/10.1177/0962280212445834

Wei, Z., Kim, S., & Kim, D. (2016). Multivariate skew normal copula for non-exchangeable dependence. Procedia Computer Science, 91, 141-150. DOI: https://doi.org/10.1016/j.procs.2016.07.051

Zhang, Y., Gomes, A. T., Beer, M., Neumann, I., & Nackenhorst, Udo & Kim, C.-W. (2019). Modeling asymmetric dependences among multivariate soil data for the geotechnical analysis - The asymmetric copula approach. Soils and Foundations, 59(6), 1960–1979. DOI: https://doi.org/10.1016/j.sandf.2019.09.001

Zhang, Y., Kim, C.-W., Beer, M., Dai, H., & Soares, C. G. (2018). Modeling multivariate ocean data using asymmetric copulas. Coastal Engineering, 135, 91-111. DOI: https://doi.org/10.1016/j.coastaleng.2018.01.008

Zhou, S. & Chen, Y. (2021). Industrial Data Analytics for Diagnosis and Prognosis: A Random Effects Modelling Approach. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119666271

Published

2024-12-19

How to Cite

Oliveira, A., Batista, A. C., Oliveira, M., Ferreira, P. H., & Fiaccone, R. (2024). Analysis of longitudinal data on child development using trivariate linear mixed models derived from copulas. Ciência E Natura, 46. https://doi.org/10.5902/2179460X70316