Analysis of longitudinal data on child development using trivariate linear mixed models derived from copulas
DOI:
https://doi.org/10.5902/2179460X70316Keywords:
Copulas, Longitudinal data, Children's anthropometric indices, Linear mixed modelsAbstract
Longitudinal studies are quite common in the area of public health and, consequently, adequate statistical methods are required to analyze the temporal evolution of one or more response variables, separately or simultaneously. Specifying the joint density function of all response variables, as well as their correlation structure, are the main obstacles of multivariate modeling procedures. It is also important to highlight the numerical difficulties often encountered in statistical inference when the response dimension increases. As an alternative, this work presents two proposals to deal with multivariate longitudinal data: (i) a univariate approach, with linear mixed models fitted to each of the response variables separately; and (ii) a joint modeling of these variables, through the use of copula functions. Both methodologies are applied to a set of real trivariate data referring to the nutritional development of children in a Brazilian municipality in the state of Bahia.
Downloads
References
Akaike, H. (1977). On entropy maximization principle. In Krishnaiah, P.R., Ed. Application of Statistics. (pp. 27-41). Amsterdam: Springer-Verlag.
Arellano-Valle, R., Bolfarine, H., & Lachos, V. H. (2005). Skew-normal linear mixed models. Journal of Data Science, 3(4), 415-438. DOI: https://doi.org/10.6339/JDS.2005.03(4).238
Arnau, J., Bono, R., Blanca, M. J., & Bendayan, R. (2012). Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs. Behavior Research Methods, 44, 1224-1238. DOI: https://doi.org/10.3758/s13428-012-0196-y
Bandyopadhyay, S., Ganguli, B., & Chatterjee, A. (2011). A review of multivariate longitudinal data analysis. Statistical Methods in Medical Research, 20(4), 299-330. DOI: https://doi.org/10.1177/0962280209340191
Bortot, P. (2010). Tail dependence in bivariate skew-normal and skew-t distributions. Recovered from: www2.stat.unibo.it/bortot/ricerca/paper-sn-2.pdf.
Brown, H. & Prescott, R. (2015). Applied Mixed Models in Medicine. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118778210
Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric Analysis of Longitudinal Data in Factorial Experiments. John Wiley & Sons.
Cho, H. (2016). The analysis of multivariate longitudinal data using multivariate marginal models. Journal of Multivariate Analysis, 143, 481-491. DOI: https://doi.org/10.1016/j.jmva.2015.10.012
Demidenko, E. (2013). Mixed Models: Theory and Applications with R. John Wiley & Sons. Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data. (2nd ed). Oxford University Press.
EBA (2014). Consultation Paper, Draft Regulatory Technical Standards on assessment methodologies for the Advanced Measurement Approaches for operational risk under Article 312 of Regulation (EU) No 575/2013. Technical report, European Banking Authority.
Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls Risk Management: Value at Risk and Beyond, 1, 176-223. DOI: https://doi.org/10.1017/CBO9780511615337.008
Fausto, M. A., Carneiro, M., Antunes, C. M. d. F., Pinto, J. A., & Colosimo, E. A. (2008). Mixed linear regression model for longitudinal data: application to an unbalanced anthropometric data set. Cadernos de Sa´ude P´ublica, 24, 513-524. DOI: https://doi.org/10.1590/S0102-311X2008000300005
Ferreira, C. S., Bolfarine, H., & Lachos, V. H. (2022). Linear mixed models based on skew scale mixtures of normal distributions. Communications in Statistics - Simulation and Computation, 51(12), 7194-7214. DOI: https://doi.org/10.1080/03610918.2020.1827265
Ferreira, P. H., Fiaccone, R. L., Lordelo, J. S., Sena, S. O., & Duran, V. R. (2019). Bivariate copula-based linear mixed-effects models: An application to longitudinal child growth data. TEMA (S˜ao Carlos), 20, 37-59. DOI: https://doi.org/10.5540/tema.2019.020.01.37
Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: applicability and limitations. Statistics & Probability Letters, 63(3), 275-286. DOI: https://doi.org/10.1016/S0167-7152(03)00092-0
Frees, E. W., Bolanc´e, C., Guillen, M., & Valdez, E. A. (2021). Dependence modeling of multivariate longitudinal hybrid insurance data with dropout. Expert Systems with Applications, 185, 115552. DOI: https://doi.org/10.1016/j.eswa.2021.115552
Frees, Edward W & Wang, P. (2006). Copula credibility for aggregate loss models. Insurance: Mathematics and Economics, 38(2), 360-373. DOI: https://doi.org/10.1016/j.insmatheco.2005.10.004
Genest, C. & Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347-368. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
Glogger, S. (2015). Visualization of Trivariate Vine Copulae (Master’s Thesis). Fakult¨at f¨ur Mathematik, Technische Universit¨at M¨unchen, M¨unchen, Deutschland.
Heilpern, S. (2014). Multivariate measures of dependence based on copulas. Mathematical Economics, 10(17), 17-32. DOI: https://doi.org/10.15611/me.2014.10.02
Hofert, M., Kojadinovic, I., M¨achler, M., & Yan, J. (2018). Elements of Copula Modeling with R. Springer. DOI: https://doi.org/10.1007/978-3-319-89635-9
Ida, A., Ishimura, N., & Nakamura, M. (2014). Note on the measures of dependence in terms of copulas. Procedia Economics and Finance, 14, 273-279. DOI: https://doi.org/10.1016/S2212-5671(14)00712-6
Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall. DOI: https://doi.org/10.1201/b17116
Joe, H. & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical Report 166, Department of Statistics.
Kahrari, F., Ferreira, C. S., & Arellano-Valle, R. B. (2019). Skew-normal-cauchy linear mixed models. Sankhya B, 81(2), 185-202. DOI: https://doi.org/10.1007/s13571-018-0173-2
Kim, S. & Kim, D. (2016). Directional Dependence Analysis Using Skew-Normal Copula- Based Regression. Statistics and Causality: Methods for Applied Empirical Research, 131-152. DOI: https://doi.org/10.1002/9781118947074.ch6
Kollo, T., Selart, A., & Visk, H. (2013). From multivariate skewed distributions to copulas. In Bapat, Ravindra B., Kirkland, Steve J., Prasad, K. M. & Puntanen, Simo. (Eds.). Combinatorial Matrix Theory and Generalized Inverses of Matrices. (pp. 63-72). Springer. DOI: https://doi.org/10.1007/978-81-322-1053-5_6
Laird, N. M. & Ware, J. H. (1982). Random-effects models for longitudinal data.Biometrics, 38(4), 963-974. DOI: https://doi.org/10.2307/2529876
Lambert, Philippe & Vandenhende, F. (2002). A copula-based model for multivariate non-normal longitudinal data: analysis of a dose titration safety study on a new antidepressant. Statistics in Medicine, 21(21), 3197-3217. DOI: https://doi.org/10.1002/sim.1249
Li, Feng & Kang, Y. (2018). Improving forecasting performance using covariate-dependent copula models. International Journal of Forecasting, 34(3), 456-476. DOI: https://doi.org/10.1016/j.ijforecast.2018.01.007
Li, Feng & He, Z. (2019). Credit risk clustering in a business group: Which matters more, systematic or idiosyncratic risk?.Cogent Economics & Finance, 7(1), 1632528. DOI: https://doi.org/10.1080/23322039.2019.1632528
Liu, X. (2016). Methods and Applications of Longitudinal Data Analysis. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-801342-7.00002-2
Manner, Hans & Reznikova, O. (2012). A survey on time-varying copulas: specification, simulations, and application. Econometric Reviews, 31(6), 654-687. DOI: https://doi.org/10.1080/07474938.2011.608042
Marcelino, Sandra Denisen do Rocio & Iemma, A. F. (2000). M´etodos de estimação de componentes de variˆancia em modelos mistos desbalanceados. Scientia Agricola, 57(4), 643-652. DOI: https://doi.org/10.1590/S0103-90162000000400008
Molenberghs, Geert & Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer.
Nelsen, R. B. (1996). Nonparametric measures of multivariate association. Lecture Notes - Monograph Series, 223-232. DOI: https://doi.org/10.1214/lnms/1215452621
Nelsen, R. B. (2006). An Introduction to Copulas. Springer Science & Business Media.
Nobre, Juvˆencio S & Singer, J. M. (2007). Residual analysis for linear mixed models. Biometrical Journal, 49(6), 863-875. DOI: https://doi.org/10.1002/bimj.200610341
Nobre, Juvˆencio S & Singer, J. M. (2011). Leverage analysis for linear mixed models.Journal of Applied Statistics, 38(5), 1063-1072. DOI: https://doi.org/10.1080/02664761003759016
Oliveira, A. T. (2018). Modelagem Estat´ıstica para Dados Financeiros Bivariados Utilizando T´ecnicas de An´alise de Sobrevivˆencia e Func¸ ˜oes de C´opula (Dissertac¸ ˜ao de mestrado). Departamento de Estat´ıstica, Universidade Federal da Bahia, Salvador, BA, Brasil.
Panelli-Martins, B. E., Santos, S. M. C. d., & Assis, A. M. O. (2008). Seguranc¸ a alimentar e nutricional: desenvolvimento de indicadores e experimentação em um munic´ıpio da Bahia, Brasil. Revista de Nutric¸ ˜ao, 31, 65s-81s. DOI: https://doi.org/10.1590/S1415-52732008000700007
Patton, A. J. (2009). Copula-based models for financial time series. In Andersen, T. G., Davis, R. A., Kreiß, J. & Mikosch, T. V. Handbook of Financial Time Series. (pp. 767–785). Springer. DOI: https://doi.org/10.1007/978-3-540-71297-8_34
Pinheiro, J. C. & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461–464. DOI: https://doi.org/10.1007/978-1-4419-0318-1
Schweizer, B. & Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9(4), 879–885. DOI: https://doi.org/10.1214/aos/1176345528
Singer, J. M., Rocha, F. M. M., & Nobre, J. S. (2017). Graphical tools for detecting departures from linear mixed model assumptions and some remedial measures. International Statistical Review, 85(2), 290-324. DOI: https://doi.org/10.1111/insr.12178
Sun, J., Frees, E. W., & Rosenberg, M. A. (2008). Heavy-tailed longitudinal data modeling using copulas. Insurance: Mathematics and Economics, 42(2), 817–830. DOI: https://doi.org/10.1016/j.insmatheco.2007.09.009
Team, R. D. C. (2018). Version 3.5.1. Vienna, Austria: R Foundation for Statistical Computing. Recovered from: https://www. r-project. org.
Tibshirani, Robert J & Efron, B. (1993). An Introduction to the Bootstrap. Chapman & Hall. Vaida, F. & Blanchard, S. (2005). Conditional Akaike information for mixed-effectsmodels. Biometrika, 351–370. DOI: https://doi.org/10.1093/biomet/92.2.351
Verbeke, G., Fieuws, S., Molenberghs, G., & Davidian, M. (2014). The analysis ofmultivariate longitudinal data: a review. Statistical Methods in Medical Research, 23(1), 42-59. DOI: https://doi.org/10.1177/0962280212445834
Wei, Z., Kim, S., & Kim, D. (2016). Multivariate skew normal copula for non-exchangeable dependence. Procedia Computer Science, 91, 141-150. DOI: https://doi.org/10.1016/j.procs.2016.07.051
Zhang, Y., Gomes, A. T., Beer, M., Neumann, I., & Nackenhorst, Udo & Kim, C.-W. (2019). Modeling asymmetric dependences among multivariate soil data for the geotechnical analysis - The asymmetric copula approach. Soils and Foundations, 59(6), 1960–1979. DOI: https://doi.org/10.1016/j.sandf.2019.09.001
Zhang, Y., Kim, C.-W., Beer, M., Dai, H., & Soares, C. G. (2018). Modeling multivariate ocean data using asymmetric copulas. Coastal Engineering, 135, 91-111. DOI: https://doi.org/10.1016/j.coastaleng.2018.01.008
Zhou, S. & Chen, Y. (2021). Industrial Data Analytics for Diagnosis and Prognosis: A Random Effects Modelling Approach. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119666271
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.