Non-binary artificial neuron with phase variation implemented on a quantum computer

Authors

DOI:

https://doi.org/10.5902/2179460X69281

Keywords:

Quantum computing, Quantum mechanics, Artificial neural networks, Sigmoid neuron, Gradient descent

Abstract

The first artificial quantum neuron models followed a similar path to classic models and they work only with discrete values. Here we introduce an algorithm that generalizes the binary model manipulating the phase of complex numbers. We propose, test, and implement a neuron model that works with continuous values in a quantum computer. Through simulations, we also demonstrated that our model may work in a hybrid training scheme utilizing gradient descent as a learning algorithm. This work represents another step in the direction of the practical use of artificial neural networks efficiently implemented in near-term quantum devices.

Downloads

Author Biographies

Jhordan Silveira de Borba, Universidade Federal do Rio Grande do Sul

Research (Master) Physics Institute - UFRGS Sociophysics, Econophysics, and Complex Networks

Jonas Maziero, Universidade Federal de Santa Maria

Associate Professor of Physics, Universidade Federal de Santa Maria

References

Altaisky, M. V. (2001). Quantum neural network.quant-ph/0107012.

Feldman, J., Rojas, R. (1996).Neural Networks: A Systematic Introduction. Springer Berlin Heidelberg, URL https://books.google.com.br/books?id=txsjjYzFJS4C.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., Jackson, B. L., Imam, N., Guo,C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S. K., Appuswamy, R., Taba, B., Amir, A., Flickner, M. D., Risk, W. P.,Manohar, R., Modha, D. S. (2014). A million spiking-neuron integrated circuit with a scalable communication network andinterface.Science,345(6197), 668–673, URL https://science.sciencemag.org/content/345/6197/668,https://science.sciencemag.org/content/345/6197/668.full.pdf. DOI: https://doi.org/10.1126/science.1254642

Nielsen,M.A.(2015).Neural networks and deep learning. Determination Press, URL http://neuralnetworksanddeeplearning.com/.

Peruš, M. (2000). Neural networks as a basis for quantum associative networks.Neural Netw World,10(6), 1001–1013.

Sanz, M., Lamata, L., Solano, E. (2018). Invited article: Quantum memristors in quantum photonics.APL Photonics,3(8), 080,801,URL https://doi.org/10.1063/1.5036596, https://doi.org/10.1063/1.5036596. DOI: https://doi.org/10.1063/1.5036596

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S., Plank, J. S. (2017). A survey of neuromorphic computing and neural networks in hardware.1705.06963.

Sutherland, J. G. (1994).The holographic cell: a quantum perspective, John Wiley Sons.

Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D. (2019). An artificial neuron implemented on an actual quantum processor.npj Quantum Information,5(1), URLhttp://dx.doi.org/10.1038/s41534-019-0140-4. DOI: https://doi.org/10.1038/s41534-019-0140-4

Downloads

Published

2024-10-10

How to Cite

Borba, J. S. de, & Maziero, J. (2024). Non-binary artificial neuron with phase variation implemented on a quantum computer. Ciência E Natura, 46. https://doi.org/10.5902/2179460X69281