The use of bacteria for bioremediation of environments contaminated with toluene: a molecular docking analysis

Authors

DOI:

https://doi.org/10.5902/2179460X68835

Keywords:

BTXs, Proteins, Fuels

Abstract

Bacteria can be helpful organisms for environmental decontamination through bioremediation processes. Among the environmental contaminants, toluene is one of the compounds present in gasoline and can be toxic in the aquatic environment, causing significant damage to organisms in this ecosystem. The detailed understanding of the main proteins and processes involved in cellular bioremediation pathways is little explored, which encourages studies in the area to optimize these processes. The ABC transporter system is involved in the transport of a wide variety of inorganic compounds and complex organic molecules. Molecular docking (DM) is an in silico methodology in which two molecules are joined (receptor versus ligand), and the chemical characteristics of this bond are verified. possibilitando identificar espécies promissoras para a biorremediação do tolueno.Thus, through the molecular docking tool, this study aimed to evaluate the interaction between toluene and ABC transporters of bacterial species of Staphylococcus aureus and Thermotoga maritima, enabling the identification of promising species for toluene bioremediation. For the DM, UCFS Chimera software (for the elimination of heteroatoms and production of 3D images), AutoDock Tools (for preparation of proteins and toluene for docking), AutoDock Vina (for docking per se), and LigPlot + (for checking amino acids and types of binding between molecules) were used. The binding energy between ABC transporters and toluene was similar for both species, being -5.2 Kcal/mol for S. aureus and -5.5 Kcal/mol for T. maritima. The number of transporter amino acids bound to toluene differed for the two species: S. aureus bound through three amino acids, while T. maritima bound through seven amino acids. The results presented in this study demonstrate that both species evaluated are promising for in vitro and in vivo studies for toluene bioremediation.

Downloads

Download data is not yet available.

Author Biographies

Eduarda Medran Rangel, Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Pelotas, RS

Science Professor at the Rio Grande City. Environmental Management and Environmental Sanitation degree at the Instituto Federal Sul-rio-grandense, and a degree in Chemistry from the Universidade de Franca. Specialization in Urban Environmental Education by the `Programa Universidade Aberta do Brazil, Specialization in Environmental Chemistry by the Instituto Federal Sul-rio-grandense. Master's and PhD in Materials Science and Engineering by the Universidade Federal de Pelotas.

Estela Fernandes e Silva, Prefeitura Municipal de Rio Grande, Rio Grande, RS

Biotechnology degree by the Universidade Federal de Pelotas, Biology degree by the Universidade de Franca, Master's and PhD from the Postgraduate Program in Physiological Sciences of the Universidade Federal de Rio Grande.

Karine Laste Macagnan, Prefeitura Municipal de Rio Grande, Rio Grande, RS, Brazil

Biotechnology degree by the Universidade Federal de Pelotas and Pedagogical Training in Biology by the Universidade de Franca. Master's and PhD in Sciences by the Graduate Program in Biotechnology by the Universidade Federal de Pelotas.

Louise Vargas Ribeiro, Universidade Federal de Pelotas, Pelotas, RS

Degree in Biological Sciences by the Universidade Federal de Pelotas, Pedagogical Training by the from the Instituto Federal Sul-rio-grandense (IFSUL), and a Specialization in Environmental Chemistry (IFSUL). Master´'s and PhD in Agronomy from the Universidade Federal de Pelotas.

Tainã Figueiredo Cardoso, Embrapa Pecuária Sudeste, Pelotas, RS

Biotechnology degree at the Federal Universidade Federal de Pelotas, Master's in Physiological Sciences - Comparative Animal Physiology from the Universidade Federal de Rio Grande, and PhD in Animal Production from the Universitat Autònoma de Barcelona.

Daiana Kaster Garcez, Universidade Federal do Rio Grande, Rio Grande, RS

Science Professor at the Rio Grande City. Master's and PhD in Biology of Continental Aquatic Environments by the Universidade Federal de Rio Grande. Biological Sciences degree with emphasis in Zoology by the Universidade Federal de Pelotas, and a Licentiate in Biological Sciences from the Instituto Federal Sul-Rio-Grandense.

References

AFROUZOSSADAT, H. A.; EMTIAZI, G.; GHASEMI, S. M.; ROGHANIAN, R. Isolation and characterization of a novel toluene-degrading bacterium exhibiting potential application in bioremediation. Jundishapur Journal of Microbiology, v. 6, p. 256-261, 2013. https://doi.org/10.5812/jjm.5142

AN, Y. J.; LEE, W. M. Comparative and combined toxicities of toluene and methyl tert-butyl ether to an Asian earthworm Perionyx excavatus. Chemosphere, v. 71, n. 3, p. 407-411, 2008. https://dx.doi.org/10.1016/j.chemosphere.2007.11.010

BEHERA, B. K.; CHAKRABORTY, H. J.; PATRA, B.; ROUT, A. K.; DEHURY, B.; DAS, B. K, SARKAR, D. J.; PARIDA, P. K.; RAMAN, R. K.; RAO, A. R.; RAI, A.; MOHAPATRA, T. Metagenomic Analysis Reveals Bacterial and Fungal Diversity and Their Bioremediation Potential From Sediments of River Ganga and Yamuna in India. Frontiers in Microbiology, v. 11, p. 1-14, 2020. https://doi.org/10.3389/fmicb.2020.556136

BERMAN, H. M.; WESTBROOK, J.; FENG, Z.; GILLILAND, G.; BHAT, T. N.; WEISSIG, H.; SHINDYALOV, I. N.; BOURNE, P. E. The Protein Data Bank. Nucleic Acids Research, v. 28, p. 235-242, 2000. https://doi.org/10.1093/nar/28.1.235

BOLTON, E.; WANG, Y.; THIESSEN, P. A.; BRYANT, S. H. PubChem: Integrated Platform of Small Molecules and Biological Activities. In: WHEELER, Ralph A.; SPELLMEYER, David C. (Eds.). Annual Reports in Computational Chemistry, Oxford, UK: Elsevier, p. 217-241, 2018. https://doi.org/10.1016/S1574-1400(08)00012-1

CLÉMENT, B.; CADIER, C. Development of a New Laboratory Freshwater/sediment Microcosm Test. Ecotoxicology, v. 7, n. 5, p. 279-290, 1998. https://dx.doi.org/10.1023/a:1008868330206

CONNERS, S. B.; MONGODIN, E. F.; JOHNSON, M. R.; MONTERO, C. I.; NELSON, K. E.; KELLY, R. M. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiology Reviews, n. 30, p. 872–905, 2006. https://doi.org/10.1111/j.1574-6976.2006.00039.x

DU, X.; LI, Y.; XIA, Y. L.; AI, S. M.; LIANG, J.; SANG, P.; JI, X. L.; LIU, S. Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. International Journal of Molecular Sciences, v. 17, n. 2, p. 1-34, 2016. https://doi.org/10.3390/ijms17020144

FIELD, J. A.; SIERRA, A. R. Microbial transformation of chlorinated benzoates. Reviews in Environmental Science and Bio/Technology, v. 7, p. 191–210, 2008. https://doi.org/10.1007/s11157-008-9133-z

GILBERT, W. Toward the proteome. Science Today, v. 29, n. 173, p. 8-11, 2001.

GODDARD, T. D.; HUANG, C. C.; MENG, E. C.; PETTERSEN, E. F.; COUCH, G. S.; MORRIS, J. H.; FERRIN, T. E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science, v. 27, n. 1, p. 14-25, 2018. https://doi.org/10.1002/pro.3235

GOFFEAU, A.; HERTOGH, B. D. ABC Tranporters. Encyclopedia of Biological Chemistry, p. 7-11, 2013. https://doi.org/10.1016/B978-0-12-378630-2.00224-3

GUEDES, I. A.; DE MAGALHÃES, C. S.; DARDENNE, L. E. Receptor-ligand molecular docking. Biophysical Reviews, v. 6 (1), p. 75-87, 2014. https://doi.org/10.1007/s12551-013-0130-2

HEYDARNEZHAD, F.; HOODAJI, M.; SHAHRIARINOUR, M.; TAHMOURESPOUR, A.; SHARIATI, S. Optimizing toluene degradation by bacterial strain isolated from oil-polluted soils. Polish Journal of Environmental Studies, v. 27, n.2, p. 655-663, 2018. https://doi.org/10.15244/pjoes/75811

HUBER, R.; LANGWORTHY, T.; KÖNIG, H.; THOMM, M.; WOESE, C.; SLEYTR, U.; STETTER, K. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Archives of Microbiology, v. 144, p. 324–333, 1986. https://doi.org/10.1007/BF00409880

ITOPF. The International Tanker Owners Pollution Federation Limited - Oil tanker spill statistics:2009. p. 1-8, 2009.

JOHNSON, G. R.; OLSEN, R. H. Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Applied and Environmental Microbiology Journal, v. 63, n. 10, p. 4047–4052, 1997. https://doi.org/10.1128/AEM.63.10.4047-4052.1997

KHAN, F.; SAJID, M.; CAMEOTRA, S. S. In-silico approach for the bioremediation of toxic pollutants. Journal of Petroleum & Environmental Biotechnology, n.4, p. 1-7, 2013. https://doi.org/10.4172/2157-7463.1000161

KIM, J. M.; JEON, C. O. Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Current Microbiology, v. 58, p. 70–75, 2009. https://doi.org/10.1007/s00284-008-9268-8

LATIF, H.; SAHIN, M.; TARASOVA, J.; TARASOVA, Y.; PORTNOY, V. A.; NOGALES, J.; ZENGLER, K. Adaptive Evolution of Thermotoga maritima Reveals Plasticity of the ABC Transporter Network. Applied and Environmental Microbiology Journal, v. 81, n. 16, p. 5477-5485, 2015. https://doi.org/10.1128/AEM.01365-15

LI, X. D.; TU, H.W.; HU, K. Q.; LIU, Y. G.; MAO, L. N.; WANG, F. Y.; QU, H. Y.; CHEN, Q. Effects of Toluene on the Development of the Inner Ear and Lateral Line Sensory System of Zebrafish. Biomedical and Environmental Sciences, v. 34, n. 2, p. 110-11, 2021. https://doi.org/10.3967/bes2021.016

LIU, Z.; LIU, Y.; ZENG, G.; SHAO, B.; CHEN, M.; LI, Z.; JIANG, Y.; LIU, Y.; ZHANG, Y.; ZHONG, H. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, v. 203, p. 139-150, 2018. https://doi.org/10.1016/j.chemosphere.2018.03.179

MEYER, C. I.; MARTINEZ, L.; MARIN, C. V.; BÖHNKE, S.; HARMS, H.; MÜLLER, J. A.; HEIPIEPER, H, J. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluenedegrader from a constructed wetland model. Plos One, v. 12, p. 1–16, 2017. https://www.ncbi.nlm.nih.gov/pubmed/28369150

NAKAI, C.; KAGAMIYAMA, H.; NOZAKI, M.; NAKAZAWA, T.; INOUYE, S.; EBINA, Y.; NAKAZAWA, A. Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. Journal of Biological Chemistry, v. 258, p. 2923-2928, 1983.

ORELLE, C.; MATHIEU, K.; JAULT, J. M. Multidrug ABC transporters in bacteria. Research in Microbiology, v. 170, n. 8, p. 381-391, 2019. https://doi.org/10.1016/j.resmic.2019.06.001

OYETIBO, G. O.; MIYAUCHI, K.; HUANG, Y.; CHIEN, M. F.; ILORI, M. O.; AMUND, O. O.; ENDO, G. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. International Biodeterioration & Biodegradation, v. 119, p. 614–625, 2017. https://doi.org/10.1016/j.ibiod.2016.10.005

PARSEK, M. R.; MCFALL, S. M.; CHAKRABARTY, A. M. Microbial degradation of toxic environmental pollutants: ecological and evolutionary considerations. International Biodeterioration & Biodegradation, v. 35, n. 1-3, p. 332, 1995. https://doi.org/10.1016/0964-8305(95)90033-0

PEREZ, S.; ROSA, M.; ABALOS, A.; GOMEZ, J. M.; CANTERO, M. D. Biodegradation of crude oil by Pseudomonas aeruginosa AT18 strain. Tecnología Química, v. XXVI, n. 1, p. 70-77, 2006.

RAJAMANICKAM, R.; KALIYAMOORTHI, K.; RAMACHANDRAN, N.; BASKARAN, D.; KRISHNAN, J. Batch biodegradation of toluene by mixed microbial consortia and its kinetics. International Biodeterioration & Biodegradation, v. 119, p. 282–288, 2017. https://doi.org/10.1016/j.ibiod.2016.11.014

SAMS, C.; LOIZOU, G. D. A.; COCKER, J. A.; LENNARD, M. S. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP). Toxicology Letters, v. 147, n. 3, p. 253-260, 2004. https://dx.doi.org/10.1016/j.toxlet.2003.11.010

SANTOS, A. L. SANTOS, D. O.; FREITAS, C. C.; FERREIRA, B. L. A.; AFONSO, I. F.; RODRIGUES, C. R.; CASTRO, H. C. Staphylococcus aureus: visiting a strain of hospital importance. Brazilian Journal of Pathology and Laboratory Medicine, Rio de Janeiro, v. 43, n. 6, p. 413-423, 2007. https://doi.org/10.1590/S1676-24442007000600005

SCHRÖDINGER, L. L. C. 2015. The PyMOL Molecular Graphics System. Version 1.80 LLC, New York, NY.

SHINODA, Y.; SAKAI, Y.; UENISHI, H.; UCHIHASHI, Y.; HIRAISHI, A.; YUKAWA, H.; YURIMOTO, H.; KATO, N. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental Microbiology Journal, v. 70, p. 1385-1392, 2004. https://doi.org/10.1128/AEM.70.3.1385-1392.2004

SHUKLA, S. K.; HARIHARAN, S.; RAO, T. S. 2020. Uranium bioremediation by acid phosphatase activity of Staphylococcus aureus biofilms: Can a foe turn a friend? Journal of Hazardous Materials, v. 384, p. 1-21, 2020. https://doi.org/10.1016/j.jhazmat.2019.121316

SRIDHAR, S.; CHINNATHAMBI, V.; ARUMUGAM, P.; SURESH, P. K. In silico and in vitro physicochemical screening of Rigidoporus sp. crude laccase-assisted decolorization of synthetic dyes-approaches for a cost-effective enzyme-based remediation methodology. Applied Biochemistry and Biotechnology, v. 169, p. 911-922, 2013. https://doi.org/10.1007/s12010-012-0041-x

SRINIVASAN, S.; SADASIVAM, S. K.; GUNALAN, S.; SHANMUGAM, G.; KOTHANDAN, G. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environmental Pollution, v. 248, p. 599-608, 2019. https://doi.org/10.1016/j.envpol.2019.02.080

TARIQ, M.; WASEEM, M.; RASOOL, M. H.; ZAHOOR, M. A.; HUSSAIN, I. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites. PeerJ, p. 1-20, 2019. https://doi.org/10.7717/peerj.7726

TONG, S. Y.; DAVIS, J. S.; EICHENBERGER, E.; HOLLAND, T. L.; FOWLER, V. G., JR. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, v. 28, n. 3, p. 603–661, 2015. https://doi.org/10.1128/CMR.00134-14

TROTT, O.; OLSON, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, v. 31, n. 2, p. 455-61, 2010. https://doi.org/10.1002/jcc.21334

XU, J.; ZHENG, L.; YAN, Z.; HUANG, Y.; FENG, C.; LI, L.; LING, J. Effective extrapolation models for ecotoxicity of benzene, toluene, ethylbenzene, and xylene (BTEX). Chemosphere, v. 240, p. 1-5, 2020. https://dx.doi.org/10.1016/j.chemosphere.2019.124906

WALLACE, A. C.; LASKOWSKI, R. A.; THORNTON, J. M. LIGPLOT: a program to generate schematic diagrams of protein - ligand interactions. Protein Engineering, v. 8, p. 127–134, 1995. https://doi.org/10.1093/protein/8.2.127

WHYTE, L. G.; BOURBONNIÈRE, L.; GREER, C. W. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Applied and Environmental Microbiology Journal, v. 63, p. 3719–3723, 1997.

ZHU, D.; ZHANG, P.; XIE, C.; ZHANG, W.; SUN, J.; QIAN, W. J.; YANG, B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnology for Biofuels, v. 10, n. 44, p. 1-14, 2017. https://doi.org/10.1186/s13068-017-0735-y

ZOU, L.; CHEN, Z.; ZHANG, X.; LIU, P.; LI, X. Phosphate promotes uranium (VI) adsorption in Staphylococcus aureus LZ-01. Letters in Applied Microbiology, v. 59, n. 5, p. 528-534, 2014. https://doi.org/10.1111/lam.12310

Downloads

Published

2022-04-04 — Updated on 2022-04-18

Versions

How to Cite

Rangel, E. M., Silva, E. F. e, Macagnan, K. L., Ribeiro, L. V., Cardoso, T. F., & Garcez, D. K. (2022). The use of bacteria for bioremediation of environments contaminated with toluene: a molecular docking analysis. Ciência E Natura, 44, e17. https://doi.org/10.5902/2179460X68835 (Original work published April 4, 2022)

Issue

Section

Special Edition