Recycling of waste from the rice chain: incorporation of rice husk and rice husk ash in polymeric composites

Authors

DOI:

https://doi.org/10.5902/2179460X68817

Keywords:

Rice husk, Rice husk ash, Polymeric composites

Abstract

The high need for polymeric materials and the availability of agro-industrial wastes, such as the rice production chain, demand the development of technologies to obtain polymeric composites based on these waste materials. Therefore, this work aims to develop materials using low density polyethylene (LDPE) as a polymer matrix and rice husk or rice husk ash, prepared by micronization in a whirlwind mill, as reinforcing fillers. The processing was carried out by injection molding, with formulations containing 20%, 30% and 40% of the filler. Tensile strength, hardness and water absorption properties were evaluated. The tensile strength of composites containing rice husk ash was higher than the same parameter for composites containing rice husk as filler. The highest tensile strength of 9.26 N/mm² was found for the material containing 20% of rice husk ash. The shore D hardness of materials containing rice husk ash was slightly higher. Regarding water absorption, the composites containing rice husk ash were those with lower absorption and all developed materials presented water absorption below 1.1%. Based on the results, we concluded that the composites have potential properties for the manufacture of polymeric consumer goods.

Downloads

Download data is not yet available.

Author Biographies

Michel Vinicius Flach, Universidade Feevale, Novo Hamburgo, RS

PhD student and master's in Environmental Quality at Universidade Feevale. Chemical Industrial Engineer from the same University.

Eduarda Krauspenhar, Universidade Feevale, Novo Hamburgo, RS

Chemical Engineering student at Universidade Feevale.

Vanusca Dalosto Jahno, Universidade Feevale, Novo Hamburgo, RS

Professor and researcher at Universidade Feevale, Coordinator of the Chemical Engineering course.

References

AGRAWAL, A.; SATAPATHY, A. Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. International Journal of Thermal Sciences, v. 89, p. 203-209, 2015.

ARIDI, N. A. M; SAPUAN, S. M; ZAINUDIN, E. S; AL-OQLA, Faris M. Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. International Journal of Polymer Analysis and Characterization, v. 21, p. 675-685, 2016.

AWANG, M.; MOHD, W. R. W.; SARIFUDDIN, N. Study the Effects of an Addition of Titanium Dioxide (TiO2) on the Mechanical and Thermal Properties of Polypropylene-Rice Husk Green Composites. Materials Research Express, v. 6, p. 075311, 2019.

BASTA, A. H.; LOTFY, V. F.; HASANIN, M. S.; TRENS, P.; EL-SAIED, H. Efficient treatment of rice byproducts for preparing high-performance activated carbons. Journal of Cleaner Production, v. 207, p. 284-295, 2019.

BHARATHIRAJA G.; JAYABAL S; SUNDARAM S. K.; RAJAMUNEESWARAN S.; MANJUNATH B. H. Mechanical Behaviors of Rice Husk and Boiled Egg Shell Particles Impregnated Coir-Polyester Composites. Macromolecular Symposia, v. 361, p. 136-140, 2016.

BATTEGAZZONE, D.; FRACHE, A. Bio-based PA5.10 for Industrial Applications: Improvement of Barrier and Thermo-mechanical Properties with Rice Husk Ash and Nanoclav. Journal of Polymers and the Environment, v. 27, p. 2213-2223, 2019.

BISHT, N.; GOPE, P. C. Effect of Alkali Treatment on Mechanical Properties of Rice Husk Flour Reinforced Epoxy Bio-Composite. Materials Today - Procedings, v. 5, n. 11, p. 24330-24338, 2018.

BOITT, A. P. W.; BARCELLOS, I. O.; ALBERTI, L. D.; BUCCI, D. Z. Evaluation of the Influence of the Use of Waste from the Processing of Rice in Physicochemical Properties and Biodegradability of PHB in Composites. Polimeros, v. 24, p. 640-645, 2014.

CONAB, Companhia Nacional de Abastecimento. 2021. Boletim dos grãos, maio 2021. Disponível em: https://www.conab.gov.br/info-agro/safras/graos. Acesso em: 6 de agosto 2021.

DISHOVSKY, N.; MALINOVA, P.; UZONOV, I. Biogenic Amorphous Silica as Filler for Elastomers. Journal of Renawable Materials, v. 6, 2017.

ERDOGAN, S.; HUNER, U. Physical and Mechanil Properties of PP Composites Based on Different types of Lignocellulosic Fillers. Journal of Wuhan University of Technology- Materials Science Edition, v. 33, n. 6, p. 1298-1307, 2018.

FERNANDES, I.; SANTOS, R.; DOS SANTOS, E.; ROCHA, T.; DOMINGUES, N.; MORAES, C.. Replacemnte of Commercial Silica by Rice Husk Ash in Epoxy Composites: A Comparative Analysis. Revista Ibero-Americana de Materiais, v. 21, p. 1, 2019.

GRYCZAK, M.; BERNADIN, A. M. Development and characterization of sustainable agglomerated composites formulated from castor polyurethane resin and reinforced with rice husk. Clean Technologies and Environmental Policy, v. 23, p. 1655-1662, 2021.

GUNA, V.; ILANGOVAN, M.; RATHER, M. H.; GIRIDHARAN, B.V.; PRAJWAL, B.; KRISHNA, K. V.; VENKATESH, K.; REDDY, N. Groundnut shell rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering, v. 27, p. 100991, 2020.

HIDALGO-SALAZAR, M. A.; SALINAS, E. Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Composites Part B: Engenniring, p. 107135, 2019.

HUI, J. L. C.; AZMAN, F. F.; BAINI, R. Physico-mechanical and morphological properties of rice husk-coconut husk fiber reinforced epoxy composites. Malaysian Journal of Fundamental and Applied Sciences, v. 16, n. 4, p. 437-443, 2020.

HUNER, U. Effect of chemical treatment and maleic anhydride grafted polypropylene coupling agent on rice husk and rice husk reinforced composite. Materials Express, v. 7, n.2, p. 134-144, 2017.

KUMAR, S.; MER, K. K. S.; GANGIL, B.; PATEL, V. K. Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites. Journal of Materials Research and Technology, v. 8, p. 2070-2082, 2019.

LAI, S.; HAN, J.; YU, Y. Properties of rice husk/epoxy composites under different interfacial treatments. Polymer Composites, v. 38, n. 9 p. 1992-2000, 2017.

LAWAL, A. Q. T.; NINSIIMA, E.; ODEBIYI, O. S.; HASSAN, A. S.; OYAGBOLA, I. A.; ONU, P.; YUSUF, D. A.; JAPYEM, E. Effect of Unburnt Rice Husk on the Properties of Concrete. Procedia Manufacturing, v. 35, p. 635-640, 2019.

LUNA, I. Z.; DAN K. C.; CHOWDHURY, A. M. S.; GAFUR, M. A.; KHAN, M. N.; KHAN, R. A. Physical and Thermal Characterization of Alkali Treated Rice Husk Reinforced Polypropylene Composites. Advances in Materials Science and Engineering, v. 1, p. 1-7, 2015.

MARTIRENA, F. e MONZÓ, J. Vegetable ashes as Supplementary Cementitious Materials. Cement and Concrete Research, v. 114, p. 57-64, 2018.

MOHAMED, S. A. N.; ZAINUDIN, E. S.; SAPUAN, S. M.; AZAMAN, M. D.; ARIFIN, A. M. T. Energy behavior assessment of rice husk fibres reinforced polymer composite. Journal of Materials Research and Technology, v. 9, n. 1, p. 383-393, 2020.

MOURA, A.; BOLBA, C.; DEMORI, R.; LIM, L.; SAMANTA, R. Effect of Rice Husk Treatment with Hot Water on Mechanical Performance in Poly(hydroxybutyrate)/Rice Husk Biocomposite. Journal of Polymers and the Environment, v.26, n. 6, p.2632-2639, 2018.

MUTHUKRISHANAN, S.; GUPTA, S.; KUA, H. W. Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and Applied Fracture Mechanics, v. 104, 2019.

NAM, G..; KIM, J.; SONG, J. Mechanical Performance of Bio-Waste-Filled Carbon Fabric/Epoxy Composites. Polymer Composites, v.40, p. 1504-1511, 2019.

OLUTOGE, F. A.; ADESINA, P. A. Effects of rice husk ash prepared from charcoal-powered incinerator on the strength and durability properties of concrete. Construction and Building Materials, v. 196, p. 386-394, 2019.

ONU, Organização das Nações Unidades. Objetivos de Desenvolvimento Sustentável: Agenda 2030. Disponível em: https://brasil.un.org/pt-br/sdgs. Acesso em: 6 de agosto de 2021.

PONGDONG, W.; KIMMERLOWE, C.; VENNEMANN, N.; THITITHAMMAWONG, A.; NAKASON, C. A comparative study of rice husk ash and siliceous earth as reinforing fillers in epoxidized naturl rubber composites. Polymer Composites, v. 29, n. 2, p. 414-426, 2018.

PONGDONG, W.; NAKASON, C.; KIMMERLOWE, C.; VENNEMANN, N.; SOYKAN, C. Influence of Filler from a Renewable Resource and Silane Coupling Agente on the Properties of Epoxidized Natural Rubber Vulcanizates. Journal Chemistry, v. 6, p. 1-15, 2015.

QUISPE, I.; NAVIA, R.; KAHHAT, R. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. Waste Management, v. 59, p. 200-210, 2017.

ROYAN N. R. R.; SULONG A. B.; YUHANA N. Y.; CHEN R. S.; GHANI M. H. A.; AHMAD S. UV/O-3 Treatment as a Surface Modification of Rice Husk Towards Preparation of Novel Biocomposites. Plos One, v. 13, n. e0197345, 2018.

SABBATINI, A.; LANARI, S.; SANTULLI, C.; PETTENARI, C. Use of almond shells and rice husk as fillers of Poly (Methyl Methacrylate) (PMMA) Composites. Materials, v. 10, n. 8, 2017.

SADIK, W. A. A.; DEMERDACH, A. G. M.; ABBAS, R.; BEDIR, A. Effect of Nanosilica and Nanoclay on the Mechanical, Physical, and Morphological Properties of Recycled Linear Low Density Polyethylene/Rice Husk Composites. Journal of Polymers and the Environment, v. 29, p. 1600-1615, 2021.

SAJITH, S.; ARUMUGAM, V.; DHAKAL, H. N. Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, v. 58, p. 60-69, 2017.

SCHIRP, A.; BARRIO, A. Fire Retardancy of Polypropylene Composites Reinforced With Rice Husks: From Oxygen Index Measurements and Cone Calorimetry to Large-Scale Single-Burning-Item Tests. Journal of Applied Polymer Science, v. 135, n. 37, 2018.

SINGH, T.; GANGIL, B.; PATNAIK, A.; BISWAS, D.; FEKETE, G. Agriculture Waste Reinforced Corn Starch-Based Biocomposites: Effect of Rice Husk/Walnut Shell on Physicomechanical, Biodegradable and Thermal Properties. Materials Research Express, v. 6, n. 4, 2019.

SONAT, C.; UNLER, C. Development of magnesium-silicate-hydrate (M-S-H) cement with rice husk ash. Journal of Cleaner Production, v. 211, p. 787-803, 2019.

SOUZA, J. T.; MENEZES, W. M.; HASELEIN, C. R.; BALDIN, T.; AZAMBUJA, R. R.; MORAIS, W. W. C. Evaluation of Physical and Mechanical Properties of Rice Husk Panels Glued with Tannin-Formaldehyde. Ciência Florestal, v. 27, n. 3, p. 1003-1015, 2017.

SUN, Z.; PANG, Y.; YANG, J.; ZHAO, H.; XIA, Z.; LI, L.; LIU, T.; ANFU, G. Improvement of Rice Husk/HDPE Bio-Composites Interfacial Properties by Silane Coupling Agent and Compatibilizer Complementary Modification. Polymers, v. 11; n. 12, p. 1928, 2019.

THOMAS, B. S. Green Concrete Partially Comprised of Rice Husk Ash as a Supplementary Cementitious Material - A Comprehensive Review. Renewable and Sustainable Energy Reviews, v. 82, p. 3913-3923, 2018.

VARALA, S.; RAVISANKAR, V.; AL-ALI, M.; POWNCEBY, M. I.; PARTHASARATHYR, R.; BHARGAVA, S. Process Optimization Using Response Surface Methodology for the Removal of Thorium From Aqueous Solutions Using Rice-Husk. Chemosphere, v. 237, n. 124488, 2019.

VERCHER, J.; FOMBUENA, V.; DIAZ, A.; SORIANO, M. Influence of fiber and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications. Journal of Thermoplastic Composite Materials, v. 33, n. 4, p. 477-500, 2020.

WU, W.; HE, H.; LIU, T.; WEI, R.; CAO, X.; SUN, Q.; VENKATESH, S.; YUEN, R. K. K; ROY, V. A. L.; LI, R. K. Y. Synergetic Enhancement on flame retardancy by melamine phosphate modified lignin in rice husk ash filled P34HB biocomposites. Composites Science and Technology, v. 168, p. 246-254, 2018.

YEH, S.; HSIEH, C.; CHANG, H.; YEN, C. C. C; CHANG, Y. Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene–rice husk composites and their foam. Composites Part A: Applied Scienc and Manufacturng, v.68, p. 313-322, 2015.

YUSUF, T. A.; DAN-LAAKA, L. E.; OGWOCHE, P. O. Characterization of selected properties of composites of waste paper with untreated bamboo stem fibre and rice husk. Acta Polytechnica, v. 57, n. 4, p. 295-303, 2017.

Downloads

Published

2022-04-04 — Updated on 2022-04-18

Versions

How to Cite

Flach, M. V., Krauspenhar, E., & Jahno, V. D. (2022). Recycling of waste from the rice chain: incorporation of rice husk and rice husk ash in polymeric composites. Ciência E Natura, 44, e8. https://doi.org/10.5902/2179460X68817 (Original work published April 4, 2022)

Issue

Section

Special Edition