This is an outdated version published on 2022-04-04. Read the most recent version.

Estimation of the time of concentration from morphometric and hydrological monitoring parameters in São Paulo state watersheds

Authors

DOI:

https://doi.org/10.5902/2179460X68805

Keywords:

Watershed, Time of concentration, Morphometric analyzes

Abstract

Morphometric analyzes support an understanding of the physical characteristics of hydrographic basins and are commonly used to estimate hydrological variables. This work aims to compare the geomorphological characteristics and the time of concentration (Tc) in two watersheds: upper part of the Jundiaí river (139.3 km2) and Piraí river (209 km2) belonging to the Jundiaí river basin, state of São Paulo. To calculate the Tc, empirical equations and monitored hydrological data were applied. Applying the US Army Corps of Engineers, Ven te Chow, and Kirpich Tc formulas, the Piraí watershed had the highest Tc, with a mean value of 6.29 h with a maximum difference between the three formulas of approximately 27%. The mean Tc for the Jundiaí watershed was 5.18 h, with a 25% variation between the minimum and maximum calculated values. Applying the hydrological method to the data collected between 2018 and 2021 from the São Paulo State Flood Alert System (SAISP) fluviometric and pluviometric stations, the minimum and maximum calculated values were 6.83 h and 23.33 h, respectively, with mean of 14.4 h. We observed higher values for the Piraí watershed, which has a larger drainage area, with Tc varying from 17 h to 49 h and mean of 36.7 h. Note that the average Tc for the Piraí watershed was almost 2.5 times higher than that of the Jundiaí watershed, despite the almost equal values of slope and length of the thalweg, calculated from the empirical equations. These equations based on morphometric parameters underestimated the Tc compared with the values calculated from the hydrological method, presenting 82% and 64% of error, respectively, for the Piraí watershed and the upper part of the Jundiaí watershed.

Downloads

Download data is not yet available.

Author Biographies

Luis Fernando Murillo-Bermúdez, Universidade Estadual de Campinas, Campinas, SP

Graduated in Geology - Universidad Industrial de Santander (2018), Master in the Department of Civil Engineering of the Universidade Estadual de Campinas. Has experience in the field of Geosciences and transport of river sediments.

André Luis Sotero Salustino Martim, Universidade Estadual de Campinas, Campinas, SP

PhD in ​​Water Resources, Professor at the Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Unicamp.

Ana Elisa Silva de Abreu, Universidade Estadual de Campinas, Campinas, SP

Professor/researcher at the Institute of Geosciences at the Universidade Estadual de Campinas (Unicamp)

Laura Maria Canno Ferreira Fais, Universidade Estadual de Campinas, Campinas, SP

Degree in Civil Engineering from the Escola de Engenharia de Lins. Master in Civil Engineering, Water Resources area from the Universidade Estadual de Campinas. PhD in Civil Engineering, Water Resources area, from the Universidade Estadual de Campinas. Post-Doctorate in Dam Safety at the Universidade Estadual de Campinas.

José Gilberto Dalfré Filho, Universidade Estadual de Campinas, Campinas, SP

Professor at the Faculdade de Engenharia Civil, Arquitetura e Urbanismo at Unicamp. Works in the undergraduate courses in Civil Engineering and in Architecture and Urbanism, in the stricto sensu postgraduate course in Civil Engineering, in the area of ​​concentration of Water, Energy and Environmental Resources and in the lato sensu postgraduate course in Architecture, Urbanism and Civil Engineering at FEC.

References

ALMEIDA, I.K.; ALMEIDA, A.K.; STEFFEN, J.L.; SOBRINHO, T. A. Model for Estimating the Time of Concentration in Watersheds. Water Resour. Manag, 30, 4083–4096. 2016. DOI: 10.1007/s11269-016-1383-x.

ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L.M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. DOI: 10.1127/0941-2948/2013/0507. Disponível em: https://www.schweizerbart.de/papers/metz/detail/22/82078/Koppen_s_climate_classification_map_for_Brazil. Acesso em: 20 jul. 2021.

BACK, Á. J. Bacias hidrográficas: Classificação e caracterização física. Florianópolis: EPAGRI, 2014. 162p.

BELTRAME, A.V. Diagnóstico do meio físico de bacias hidrográficas – modelo e aplicação. Florianópolis: Ed. UFSC, 1994. 112p.

BLÖSCHL, G. et al. Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, v. 64, p. 1141 – 1158, 2019. DOI: 10.1080/02626667.2019.1620507.

CHARLTON, R. Fundamentals of fluvial geomorphology. London: Routledge, 2008.

CONSÓRCIO PROFILL-RHAMA. Plano de Recursos Hídricos das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí, 2020 a 2035: Relatório Final. Piracicaba (SP), 2020. 712 P.

DAS, S. Hydro-geomorphic characteristics of the Indian (Peninsular) catchments: Based on morphometric correlation with hydro-sedimentary data. Advances in Space Research, v. 67, n. 8, p. 2382-2397, 2021. DOI: 10.1016/j.asr.2021.01.043. Disponível em: https://doi.org/10.1016/j.asr.2021.01.043. Acesso em: 30 jul. 2021.

DRISCOLL M, CLINTON S, JEFFERSON A, MANDA A, MCMILLAN S. Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water. 2(3):605-648, 2010. DOI: 10.3390/w2030605.

FAN, F.M.; COLLISCHONN, W.; SORRIBAS, M.V.; PONTES, P.R.M. Sobre o início da rede de drenagem definida a partir dos modelos digitais de elevação. Revista Brasileira de Recursos Hídricos, 18, 241-257, 2013. DOI: 10.21168/rbrh.v18n3.p241-257.

GERICKE, O.J. GIS Applications to Investigate the Linkage between Geomorphological Catchment Characteristics and Response Time: A Case Study in Four Climatological Regions, South Africa. Water, 11, 1072, 2019. DOI: 10.3390/w11051072.

GERICKE, O.J.; SMITHERS, J.C. Review of methods used to estimate catchment response time for the purpose of peak discharge estimation. Hydrol. Sci. J., 59, 1935–1971, 2014.

GLOBAL WATER PARTNERSHIP y INTERNACIONAL NETWORK OF BASIN ORGANIZATION. Manual para la Gestión Integrada de Recursos Hídricos en Cuencas. Francia. (2009). 112 p.

GOERL, R. F.; KOBIYAMA, M.; SANTOS, I. Hidrogeomorfologia: Princípios, Conceitos, Processos e Aplicações. Revista Brasileira de Geomorfologia - v. 13, nº2, p.103-111, 2012.

GRAVELIUS, H. Flusskunde. Goschen Verlagshan dlung Berlin. Em: Zavoianu, I. (Ed.), Morphometry of drainage basins. Amsterdam: Elsevier, 1914.

GRIMALDI, S, PETROSELLI, A, TUARO, F, and PORFIRI, M. Time of concentration: a paradox in modern hydrology. Hydrological Sciences Journal 57 (2): 217–228, 2012. DOI: 10.1080/02626667.2011.644244.

HADLEY, R.F.; SCHUMM, S.A. Sediment sources and drainage basin characteristics in the Upper Cheyenne River basin. USGS water supply paper 1532-B, p 137-196, 1961.

HORTON, R.E. Drainage-basin characteristics. Trans. Am. Geophys. Union 13, p. 350–361, 1932. DOI: 10.1029/TR013i001p00350.

HORTON, R. Erosional development of streams and their drainage basins: hidrophysical approach to quatitative morphology. Geological Society of American Bulletin, New York, v.56. p. 275–370, 1945. DOI: 10.1130/0016-7606(1945)56[275:edosat]2.0.co;2. Disponivel em: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2. Acesso em: 31 jul. 2021.

INNOCENTE, C; PEREZ, A. B.; SÁ, J. H. M.; ARIENTI, P. F.; CHAFFE, P. L. B. Combinando geromorfologia e padrões hidrodinâmicos do escoamento de base para melhorar a estimativa do tempo de concentração. In: XXIII Simpósio Brasileiro de Recursos Hídricos, 2019, Foz do Iguaçú. XXIII Simpósio Brasileiro de Recursos Hídricos, 2019.

INNOCENTE, C; CHAFFE, P. L. B.; MOTA, A. A.; GRISON, F.; KOBIYAMA, M. Análise do tempo de concentração em quatro bacias experimentais. In: XXII Simpósio Brasileiro de Recursos Hídricos, 2017, Florianópolis. Simpósio Brasileiro de Recursos Hídricos, 2017.

INSTITUTO DE PESQUISAS TECNOLÓGICAS (IPT) & DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA (DAEE). Cadastramento de pontos de erosão e inundação no Estado de São Paulo. São Paulo. IPT, 2012 (Relatório Técnico 131.057 – 205).

JENSON, S. K.; DOMINGUE, J. O. Extracting topographic sctruture from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, Maryland, USA, v. 54, no. 11, p. 1593-1600, 1988.

JUNIOR, J. E. F.; E BOTELHO, R. G. M. Análise comparativa do tempo de concentração: um estudo de caso na bacia do rio Cônego, município de Nova Friburgo/RJ. XIX Simpósio Brasileiro de Recursos Hídricos, 2011, Maceió. Simpósio Brasileiro de Recursos Hídricos, 2011.

KOBIYAMA, M; GRISON, F.; LINO, J. F. L.; SILVA, R. V. Estimativa morfométrica e hidrológica do tempo de concentração na bacia do campus da UFSC, Florianópolis-SC. ABRH. I Simpósio de Recursos Hídricos Sul-Sudeste. 2006.

MALUTTA, S.; Pscheidt, J. C.; NETO, t. g.; THIESEN, A.; POMPÊO, A.; BONUMÁ, N. B. Estimativa do tempo de concentração na bacia hidrográfica do campus da UFSC em Joinville. In: Simpósio Brasileiro de Recursos Hídricos, 2017, Florianópolis. Simpósio Brasileiro de Recursos Hídricos, 2017.

MAMÉDIO, F. M. P.; CASTRO, N. M. R.; CORSEUIL, C. W. Tempo de concentração para Bacias Rurais Monitoradas na Região do Planalto Basáltico no Sul do Brasil. REGA - REVISTA DE GESTÃO DE ÁGUA DA AMÉRICA LATINA, v. 15, p. 1-17, 2018.

MANGAN, P.; HAQ, M. A.; BARAL, P. Morphometric analysis of watershed using remote sensing and GIS—a case study of Nanganji River Basin in Tamil Nadu, India,” Arab. J. Geosci., v. 12, n. 6 2019. DOI: 10.1007/s12517-019-4382-4. Disponível em: https://doi.org/10.1007/s12517-019-4382-4. Acesso em: 30 jul. 2021.

MANSIKKANIEMI, H. The sinuosity of rivers in northern Finland. Publicationes Instituti Geographici Universitatis Turkuensis, v.52, p.16-32, 1970.

MCCUEN, R. H. Uncertainty Analyses of Watershed Time Parameters. Journal of Hydraulic Engineering, v. 14, n. 5, p. 490–498, 2009. DOI: 10.1061/(ASCE)HE.1943-5584.0000011. Disponível em: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000011. Acesso em: 30 jul. 2021.

MCCULLOCH, J. S. G., ROBINSON, M. History of forest hydrology. Journal of Hydrology, v. 150, p. 189-216, 1993. DOI: 10.1016/0022-1694(93)90111-L. Disponível em: https://doi.org/10.1016/0022-1694(93)90111-L. Acesso em: 30 jul. 2021.

MEZA, J. C. Análisis comparativo de los modelos digitales de elevaciones SRTM y MDE-Ar 2.0 para la identificación de áreas de peligrosidad por inundaciones y anegamientos en un área urbana de llanura. Geográfica Digital. v. 17, p. 44-60, 2020. DOI: 10.30972/geo.17334015. Disponível em: https://revistas.unne.edu.ar/index.php/geo/article/view/4015. Acesso em: 31 jul. 2021.

MILLER, V.C. A quantitative geomorphic study of drainage basin characteristics on the Clinch Mountain area, Virginia and Tennessee, Project NR 389–402. Technical report 3. Department of Geology. ONR, Columbia University, New York, 1953.

MOTA, A.A.; Kobiyama, M. Reconsiderações sobre a Fórmula de Kirpich para o cálculo de tempo de concentração. Revista Brasileira de Recursos Hídricos, v. 20, p. 55-59, 2015.

MORAIS, R. C. S.; SALES, M. C. L. Extração Automática de Drenagem: uma Análise Comparativa a Partir de Diferentes Ferramentas e Bases de Dados. Revista Brasileira de Geografia Física. v.09, n.06, 1849-1860 2016.

O’CALLAGHAN, J. F.; MARK, D. M. The extraction of drainage networks from elevation data. Computer Vision, Graphics, and Image Processing, ScienceDirect, Elsevier B. V, Amsterdam, v. 28, p. 323-344, 1984.

OLIVEIRA, J.B., CAMARGO, M.N., ROSSI, M., CALDERANO FILHO, B. Mapa pedológico do Estado de São Paulo: legenda expandida. Campinas: Instituto Agronômico/EMBRAPA Solos; v. 1. 64 p. 1999.

RAVAZZANI, G., BOSCARELLO, L., CISLAGHI, A., MANCINI, M. Review of Time-of-Concentration Equations and a New Proposal in Italy. Journal of Hydrologic Engineering, v. 24, 10. 2019. DOI: https://orcid.org/0000-0002-6850-0883.

RODRIGUEZ-ITURBE, I. and VALDES, J. B.: The geomorphologic structure of hydrologic response, Water Resour. Res., 15, 1409–1420, 1979.

RODRIGUEZ-ITURBE, I., GONZALEZ-SANABRIA, M., and BRAS, R. L.: A geomorphoclimatic theory of the instantaneous unit hydrograph, Water Resour. Res., 18, 877–886, 1982.

SADHASIVAM, N., BHARDWAJ, A., POURGHASEMI, H.R, KAMARAJ, N. P. Morphometric attributes-based soil erosion susceptibility mapping in Dnyanganga watershed of India using individual and ensemble models. Environ Earth Sci, v. 79, p. 360, 2020. DOI: 10.1007/s12665-020-09102-3. Disponível em: https://doi.org/10.1007/s12665-020-09102-3. Acesso em: 31 jul. 2021.

SCHUMM, S.A. The evolution of drainage systems and slopes in Badlands at Perth Amboy. Geological Society America Bulletin, v. 67, p. 597-646, 1956. DOI: http://dx.doi.org/10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2.

SILVEIRA, A. L. L. Desempenho de Fórmulas de Tempo de Concentração em Bacias Urbanas e Rurais. RBRH – Revista Brasileira de Recursos Hídricos. v. 10, n.1, p. 5-23, 2005. DOI: 10.21168/rbrh.v10n1. p5-29. Disponível em: https://www.abrhidro.org.br/SGCv3/publicacao.php?PUB=1&ID=29&SUMARIO=896. Acesso em: 29 jul. 2021.

SOUZA, J. O. P. DE; ALMEIDA, J. D. M. DE. Modelo digital de elevação e extração automática de drenagem: dados, métodos e precisão para estudos hidrológicos e geomorfológicos. Boletim de Geografia, v. 32, n. 2, p. 134 - 149, 2014.

STEFFEN, W. et al. The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review. v. 2, n. 1, p. 81-98, 2015. DOI:10.1177/2053019614564785. Disponível em: https://journals.sagepub.com/doi/10.1177/2053019614564785. Acesso em: 30 jul. 2021.

STRAHLER, A.N. Hypsometric (area altitude) analysis of erosional topography. Geology Society American Bulletin, v.63, n.10, p.1117-1142, 1952. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2. Disponível em: https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2. Acesso em: 30 julho. 2021.

STRAHLER, A. N. Quantitative geomorphology of drainage basins and channel networks. In: Chow. V.T. Handbook of applied hydrology. New York: McGraw-Hill Book Company.

TEWARI, N. K; MISRA, A. K; SHARMA, A. Assessment of geomorphological and hydrological variations in Bhagirathi River Drainage sub-basin with the help of morphometric studies, Journal of Taibah University for Science, 13:1, 1006-1013, 2019. DOI: 10.1080/16583655.2019.1670888.

THOMAS, W. O., MONDE, M. C., & DAVIS, S. R. (2000). Estimation of time of concentration for Maryland streams. Journal of the Transportation Research Board, 1720, 95–99.

TUNDISI, J. G. Novas perspectivas para a gestão de recursos hídricos. Revista USP, (70), 24-35, 2006. DOI: https://doi.org/10.11606/issn.2316-9036.v0i70p24-35.

TUNDISI, J. G. & MATSUMURA-TUNDISI T. Recursos Hídricos no Século 21. Oficina de textos. 328 pp. 2011.

VILLELA, S. M.; MATTOS, A. Hidrologia aplicada. São Paulo: McGraw-Hill do Brasil, 1975, 245 p.

WORLD METEOROLOGICAL ORGANIZATION E UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION. International Glossary of Hydrology, WMO Report No. 385, Geneva, 2012.

Downloads

Published

2022-04-04

Versions

How to Cite

Murillo-Bermúdez, L. F., Martim, A. L. S. S., Abreu, A. E. S. de, Fais, L. M. C. F., & Dalfré Filho, J. G. (2022). Estimation of the time of concentration from morphometric and hydrological monitoring parameters in São Paulo state watersheds. Ciência E Natura, 44, e24. https://doi.org/10.5902/2179460X68805

Issue

Section

Special Edition