Evaluation of normality, validity of mean tests and non-parametric options: contributions to a necessary debate
DOI:
https://doi.org/10.5902/2179460X67509Keywords:
ANOVA assumptions, Multiple comparison tests, GLzMAbstract
Experimentation is an important methodological basis for innovations in the agricultural sector. Nevertheless, several aspects can be improved in the classical statistical analysis used in agricultural research. The objective of this review was to discuss a few conceptual elements and research results about the validity of statistical tests usually applied in experimentation and present some recommendations that can improve the quality of the analyzes commonly used in the scope of fixed models. Useful elements for the discussion of tests of means, assessment of the condition of normality, and non-parametric analysis options are presented. Understanding the statistical hypotheses and Type I error subtypes, for example, can help in better result interpretation and choice of means test. Some doubts about the evaluation of the normality requirement of the residues explored here can also help researchers better use parametric statistical tools. Finally, we present a general decision flowchart and a brief exemplified discussion of some non-parametric analysis options with emphasis on the differences between classical methods and methods based on generalized models.
Downloads
References
ALVAREZ, V. H.; ALVAREZ, G. A. M. Reflexões sobre a utilização de estatística para pesquisa em ciência do solo. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, v. 38, n. 1, 28-35, 2013.
BANZATTO, D. A.; KRONKA, S. N. Experimentação agrícola. 4. ed. Jaboticabal: Funep, 2006.
BIRD, K.D.; HADZI-PAVLOVIC, D. Controlling the maximum familywise Type I error rate in analyses of multivariate experiments. Psychological Methods, v. 19, n. 2, 265–280, 2014. DOI: https://doi.org/10.1037/a0033806
BORGES, L. C.; FERREIRA, D. F. Power and type I error rates of Scott-Knott, Tukey and Student-Newman-Keuls’s tests under residual normal and non-normal distributions. Revista Matemática e Estatística, v. 21, n. 2, 67-83, 2003.
BOX, G. E. P.; COX, D. R. An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), v. 26, n. 2, 211-252, 1964. DOI: https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
CANDIOTI, L. V.; ZAN, M. M.; CAMARA, M. S.; GOICOECHEA, H. C. Experimental design and multiple response optimization - using the desirability function in analytical methods development. Talanta, v. 124, n. 2, 123-138, 2014. DOI: https://doi.org/10.1016/j.talanta.2014.01.034
CARGNELUTTI FILHO, A.; SOUZA, J. M.; PEZZINI, R. V.; NEU, I. M. M.; SILVEIRA, D. L.; PROCEDI, A. Optimal plot size for experiments with black oats and the common vetch. Ciência Rural, v. 50, e20190123, 2020. DOI: https://doi.org/10.1590/0103-8478cr20190123
CARVALHO, A.M.X. Estatística Experimental e Observacional: uma nova abordagem sobre os métodos clássicos. Rio Paranaíba: UFV-CRP, in press, 2023.
CARVALHO, A.M.X.; MENDES, F.Q.; BORGES, P.H.C.; KRAMER, M. A brief review of the classic methods of experimental statistics. Acta Scientiarum - Agronomy, v. 45, e56882, 2023a. DOI: https://doi.org/10.4025/actasciagron.v45i1.56882
CARVALHO, F. J. Modelos lineares generalizados na agronomia: análise de dados binomiais e de contagem, zeros inflacionados e enfoque bayesiano. Tese (Doutorado em Fitotecnia). Universidade Federal de Uberlândia, Uberlândia, 2019.
CARVALHO, A.M.X.; SOUZA, M.R.; MARQUES, T.B.; SOUZA, D.L.; SOUZA, E.F.M. Familywise type I error of ANOVA and ANOVA on ranks in factorial experiments. Ciência Rural, v. 53, n. 7, e20220146, 2023b. DOI: https://doi.org/10.1590/0103-8478cr20220146
CECON, P. R.; SILVA, A. R.; NASCIMENTO, M.; FERREIRA, A. Métodos estatísticos. Viçosa: Editora da UFV, 2012.
CONAGIN, A. Tables for the calculation of the probability to be used in the modified bonferroni's test. Brazilian Journal of Agriculture, v. 76, 71-83, 2001. DOI: https://doi.org/10.37856/bja.v76i1.3987
CONAGIN, A.; PIMENTEL-GOMES, F. Escolha adequada dos testes estatísticos para comparações múltiplas. Brazilian Journal of Agriculture, v. 79, 288-295, 2004. DOI: https://doi.org/10.37856/bja.v79i3.1392
CONAGIN, A.; BARBIN, D.; DEMÉTRIO, C. G. B. Modifications for the Tukey test procedure and evaluation of the power and efficiency of multiple comparison procedures. Scientia Agricola, v. 65, n. 4, 428-432, 2008. DOI: https://doi.org/10.1590/S0103-90162008000400016
CONOVER, W. J. Practical Nonparametric Statistics. 3.. ed. John Wiley & Sons, 1999.
CONOVER, W. J. The rank transformation - an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. WIREs Computational Statistics, v. 4, 432-438, 2012. DOI: https://doi.org/10.1002/wics.1216
CONOVER, W. J.; IMAN, R.L. Rank transformation as a bridge betwen parametric and nonparametric statistics. The American Statistician, v. 35, n. 3, 124-134, 1981. DOI: https://doi.org/10.2307/2683975
CONRADO, T. V.; FERREIRA, D. F.; SCAPIM, C. A.; MALUF, W. R. Adjusting the Scott-Knott cluster analyses for unbalanced designs. Crop Breeding and Applied Biotechnology, v. 17, 1-9, 2017. DOI: https://doi.org/10.1590/1984-70332017v17n1a1
COUTO, M. R. M.; JACOBI, L. F.; MACHADO, G. S. Analise de variância multivariada aplicada a dados com medidas repetidas. Ciência & Natura, Santa Maria, v. 42, e01, 2020. DOI: https://doi.org/10.5902/2179460X39870
DANCEY, C. P.; REIDY, J. G.; ROWE, R. Estatística sem matemática para as ciências da saúde. Porto Alegre: Penso, 2017.
DI RIENZO, J. A.; GUZMÁN, A. W.; CASANOVES, F. A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics, v. 7, 129-142, 2002. DOI: https://doi.org/10.1198/10857110260141193
DUTCOSKY, S. D. Análise sensorial de alimentos. 4. ed. Curitiba: Champagnat – PUCPress; 2013.
FERREIRA, D. F. SISVAR: A Guide for Its Bootstrap Procedures in Multiple Comparisons. Ciência & Agrotecnologia, v. 38, n. 2, 109-112, 2014. DOI: https://doi.org/10.1590/S1413-70542014000200001
GARCIA-MARQUES, T.; AZEVEDO, M. A inferência estatística múltipla e o problema da inflação do nível de alfa: a ANOVA como exemplo. Psicologia, v. 10, n. 1, 195-220, 1995.
GIRARDI, L. H.; CARGNELUTTI FILHO, A.; STORCK, L. Erro tipo I e poder de cinco testes de comparação múltipla de médias. Revista Brasileira de Biometria, v. 27, n. 1, 23-36, 2009.
GONÇALVES JÚNIOR, F. A.; CORRÊA, T. C. Reflexões sobre a hiperspecialização científica e suas conseqüências para a geografia. Geografia, Ensino & Pesquisa, v. 21, n. 3, 87-96, 2017. DOI: https://doi.org/10.5902/2236499425828
GONÇALVES, B. O.; RAMOS, P. S.; AVELAR, F. G. Teste de Student-Newman-Keuls Bootstrap: proposta, avaliação e aplicação em dados de produtividade de graviola. Revista Brasileira de Biometria, v. 33, 445-470, 2015.
GOTELLI, N. J.; ELLISON, A. M. Princípios de estatística em ecologia. Porto Alegre: Artmed, 2011.
HINES, W. G. S.; O’HARA-HINES, R. Increased power with modified forms of the Levene (Med) test for heterogeneity of variance. Biometrics, v. 56, n. 2, 451-454, 2000. DOI: https://doi.org/10.1111/j.0006-341X.2000.00451.x
KESELMAN, H. J. Per Family or Familywise Type I Error Control: "Eether, Eyether, Neether, Nyther, Let's Call the Whole Thing Off!". Journal of Modern Applied Statistical Methods, v. 14, n. 1, 24-37, 2015. DOI: https://doi.org/10.22237/jmasm/1430453100
KRAMER, M. H.; PAPAROZZI, E. T.; STROUP, W. W. Best Practices for Presenting Statistical Information in a Research Article. HortScience, v. 54, n. 9, 1605-1609, 2019. DOI: https://doi.org/10.21273/HORTSCI13952-19
LITTLE, R. J. In praise of simplicity not mathematistry! Ten simple powerful ideas for the statistical scientist. Journal of the American Statistical Association, v. 108, n. 502, 359-369, 2013. DOI: https://doi.org/10.1080/01621459.2013.787932
LOUREIRO, L. M. J.; GAMEIRO, M. G. H. Interpretação crítica dos resultados estatísticos: para lá da significância estatística. Revista de Enfermagem Referência, v. 3, n. 3, 151-162, 2011. DOI: https://doi.org/10.12707/RIII1009
LÚCIO, A. D.; SARI, B. G. Planning and implementing experiments and analyzing experimental data in vegetable crops: problems and solutions. Horticultura Brasileira, v. 35, 316-327, 2017. DOI: https://doi.org/10.1590/s0102-053620170302
MANLY, B. F. J. Multivariate statistical methods – a primer. 2. ed. London: Chapman & Hall, 1995.
MANN, P. S. Introdução à estatística. 8ª Ed. Rio de Janeiro: LTC, 2015.
MONTGOMERY, D. C. Design and Analysis of Experiments. 9. ed. Wiley, Danvers, 2017.
NUNES, R. P. Métodos para a pesquisa agronômica. Fortaleza: Ed. UFC, 1998.
PATRIOTA, A. G. Uma medida de evidência alternativa para testar hipóteses gerais. Ciência & Natura, Santa Maria, v. 36, 14-22, 2014. DOI: https://doi.org/10.5902/2179460X13195
PERECIN, D.; BARBOSA, J. C. Uma avaliação de seis procedimentos para comparações múltiplas. Revista de Matemática e Estatística, v. 6, n. 1, 95-104, 1988.
PERECIN, D.; CARGNELUTTI FILHO, A. Efeitos por comparações e por experimento em interações de experimentos fatoriais. Ciência e Agrotecnologia, v. 32, n. 1, p. 68-72, 2008. DOI: https://doi.org/10.1590/S1413-70542008000100010
PIEPHO, H. P.; EDMONDSON, R. N. A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and Crop Science, v. 204, n. 5, 429-455, 2018. DOI: https://doi.org/10.1111/jac.12267
PIMENTEL-GOMES, F. Curso de estatística experimental. Piracicaba: FEALQ, 2009.
POSSATTO JUNIOR, O.; BERTAGNA, F. A. B.; PETERLINI, E.; BALERONI, A. G.; ROSSI, R. M.; ZENI NETO, H. Survey of statistical methods applied in articles published in Acta Scientiarum. Agronomy from 1998 to 2016. Acta Scientiarum - Agronomy, v. 41, e42641, 2019. DOI: https://doi.org/10.4025/actasciagron.v41i1.42641
PRIMPAS, I.; TSIRTSIS, G.; KARYDIS, M.; KOKKORIS, G. D. Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecological Indicators, v. 10, 178-183, 2010. DOI: https://doi.org/10.1016/j.ecolind.2009.04.007
SALTER, K. C.; FAWCET, R. F. The art test of interaction: a robust and powerful rank test of interaction in factorial models. Communications in Statistics - Simulation and Computation, v. 22, 137-153, 1993. DOI: https://doi.org/10.1080/03610919308813085
SAWILOWSKY, S. S.; BLAIR, R. C. A more realistic look at the robustness and Type II error properties of the t test to departures from population normality. Psychological Bulletin, v. 111, n. 2, 352–360, 1992. DOI: https://doi.org/10.1037/0033-2909.111.2.352
SCHMIDER, E.; ZIEGLER, M.; DANAY, E.; BEYER, L.; BÜHNER, M. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, v. 6, n. 4, 147–151, 2010. DOI: https://doi.org/10.1027/1614-2241/a000016
SNEDECOR, G. W.; COCHRAN, W. G. Statistical Methods. 8. ed. Iowa: ISU Press. 1989.
SOUSA, C. A. D.; LIRA JUNIOR, M. A.; & FERREIRA, R. L. C. Avaliação de testes estatísticos de comparações múltiplas de médias. Revista Ceres, v. 59, n. 3, 350-354, 2012. DOI: https://doi.org/10.1590/S0034-737X2012000300008
STORCK, L.; GARCIA, D. C.; LOPES, S. J.; ESTEFANEL, V. Experimentação Vegetal. 3. Ed. Santa Maria: Ed UFSM, 2016.
STROUP, W. W. Rethinking the Analysis of Non-Normal Data in Plant and Soil Science. Agronomy Journal, v. 107, n. 2, 811-827, 2015. DOI: https://doi.org/10.2134/agronj2013.0342
TAVARES, L. F.; CARVALHO, A. M. X.; MACHADO, L. G. An evaluation of the use of statistical procedures in soil science. Revista Brasileira de Ciência do Solo, v. 40: e0150246, 2016. DOI: https://doi.org/10.1590/18069657rbcs20150246
TORMAN, V. B. L.; COSTER, R.; RIBOLDI, J. Normalidade de variáveis: métodos de verificação e comparação de alguns testes não-paramétricos por simulação. Revista HCPA, v. 32, n. 2, 227-235. 2012.
WOBBROCK, J. O.; FINDLATER, L.; GERGLE, D.; HIGGINS, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In J. J. HIGGINS (Ed) Proceedings of the ACM Conference on Human Factors in Computing Systems. Vancouver, ACM Press New York, 2011, p. 143-146. DOI: https://doi.org/10.1145/1978942.1978963
ZHIYUAN, W.; WANG, D.; ZHOU, H.; QI, Z. Assessment of soil heavy metal pollution with principal component analysis and Geoaccumulation Index. Procedia Environmental Sciences, v. 10, 1946–1952, 2011. DOI: https://doi.org/10.1016/j.proenv.2011.09.305
ZIMMERMANN, F. J. P. Estatística Aplicada à Pesquisa Agrícola. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2004.
ZIMMERMAN, D. W. A note on consistency of non‐parametric rank tests and related rank transformations. British Journal of Mathematical and Statistical Psychology, v. 65, n. 1, 122-144, 2012. DOI: https://doi.org/10.1111/j.2044-8317.2011.02017.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.


