Alternative control of phytopathogenic bacteria with essential oils of Elionurus latiflorus and Cymbopogon flexuosus
DOI:
https://doi.org/10.5902/2179460X67338Keywords:
Antimicrobial, MIC, MBC, CitralAbstract
The use of hazardous chemicals has become a common practice to control diseases that affect agricultural production. In this scenario, society is challenged to increase food availability while reducing pesticide use, which causes damage to health and the environment. In this sense, essential oils appear as a promising alternative to reduce the use of pesticides, since they are plant-derived compounds. This study aimed to identify the main chemical components and evaluate the in vitro antimicrobial potential of essential oils of the Brazilian species Elionurus latiflorus and the exotic species Cymbopogon flexuosus against the phytopathogenic bacteria Xanthomonas axonopodis pv. phaseoli, Ralstonia solanacearum, Pectobacterium carotovorum pv. carotovorum and Pseudomonas syringae pv. tomato. The main component identified of the essential oils was citral at the concentrations 65.38% for E. latiflorus and 71.6% for C. citratus. The analysis of the antibacterial activity of the essential oils showed effect against all bacteria analyzed when compared to the antibiotic gentamicin. The antibiotic produced inhibition zone diameters from 11.30 to 20.67 mm, while the essential oils produced the inhibition zones from 51.22 to 90 mm and pure citral around 86 mm. MIC values for essential oils were found between 25 and 200 µL/mL and MBC between 100 and 400 µL/mL. The study showed that the oils have inhibitory effect on the microorganisms tested.
Downloads
References
ABDULAI, M. et al. Detection of Xanthomonas axonopodis pv. manihotis, the causal agent of cassava bacterial blight diseases in cassava (Manihot esculenta) in Ghana by polymerase chain reaction. European Journal of Plant Pathology, Wageningen, v. 150, n. 2, p. 471–484, 2018.
ADHIKARI, S. et al. Randomly primed improved PCR approach for genetic characterization and identification of Cymbopogon germplasms. Rendiconti Lincei, Via della Lungara v. 28, n. 2, p. 379–392, 2017.
ALKAN, D.; YEMENICIOĞLU, A. Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids, Boston v. 55, p. 1–10, 2016.
ASHMAWY, N. A.; AL, D. A.; MOHAMED, F. Potential impacts of Pinus halepensis Miller trees as a source of phytochemical compounds : antibacterial activity of the cones essential oil and n -butanol extract. Agroforestry Systems, [s.l.] v. 94, n. 4, p. 1403-1413, 2020.
ASMAA, M.; NADJIB, B. M. Chemical composition and antimicrobial activity of the Algerian Laurus nobilis essential oil. Algerian Journal of Natural Products, Béjaïa v. 5, n. 2, p. 507-514, 2017.
BAJPAI, V. K. et al. Potential roles of essential oils on controlling plant pathogenic bacteria Xanthomonas Species: A Review. The Plant Pathology Journal, Seoul, v. 27, n. 3, p. 207–224, 2011.
BALTA, I. et al. Geraniol and linalool loaded nanoemulsions and their antimicrobial activity. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, Cluj-Napoca, v. 74, n. 2, p. 157, 2017.
BAUER, A. W. et al. Antibiotic susceptibility testing by a standarized single disk method. American Journal of Clinical Pathology, Chicago, v. 45, p. 493–496, 1966.
BENALI, T. et al. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatalysis and Agricultural Biotechnology, Illinois, v. 28, p. 101696, 2020.
BHAT, K. et al. Studies on the efect development of soft rot os cabbage (Brassica oleracea var. capitata) caused by Erwinia carotovora subsp. carotovora. Journal of Phytology, Tamil Nadu, v. 2, p. 64–67, 2010.
BRAVO CADENA, M. et al. Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, Montana v. 122, p. 582–590, 2018.
CANSIAN, R. L. et al. Atividade antimicrobiana e antioxidante do óleo essencial de ho-sho (Cinnamomum camphora Ness e Eberm var. Linaloolifera fujita). Ciência e Tecnologia de Alimentos, Alegre, v. 30, n. 2, p. 378–384, 2010.
CARNEIRO, F. F. et al (org.). Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. Bela Vista: Expressão Popular, 2015. p. 624. Disponível em: http://www.abrasco.org.br/site/wp-content/uploads/2015/03/Dossie_Abrasco_02.pdf%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B9788445820667000033. Acesso em: 23 mar. 2018.
CARVAJAL-YEPES, M. et al. A global surveillance system for crop diseases. Science, New York, v. 364, n. 6447, p. 1237–1240, 2020.
CARVAJAL, M.; VERGARA, A. Chemical composition and anti-phytopathogenic activity of the essential oil of Beilschmiedia miersii. Natural Product Communications, [s.l.], v. 11, n. 9, p. 1367-1362, 2016.
CHAHARDOLI, M.; FAZELI, A.; GHABOOLI, M. Antimicrobial activity of LFchimera synthetic peptide against plant pathogenic bacteria. Archives of Phytopathology and Plant Protection, [s.l.], v. 50, n. 19–20, p. 1008–1018, 2017.
CHEN, Y; et al. Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. Plant and Soil, Washington, v. 387, n. 1–2, p. 425–440, 2014.
CHOUHAN, S.; SHARMA, K.; GULERIA, S. Antimicrobial activity of some essential oils - Present status and future perspectives. Medicines, Basel, v. 4, n. 3, p. 58, 2017.
CORRÊA, B. O.; SOARES, V. N.; SANGIOGO, M. Interaction between bacterial biocontrol-agents and strains of Xanthomonas axonopodis pv. phaseoli effects on biocontrol efficacy of common blight in beans. African Journal of Microbiology Research, Lagos, v. 11, n. 32, p. 1294-1302, 2017.
COSTA, C. M. G. R. et al. Óleo essencial de citronela no controle da bactéria fitopatogênica Erwinia carotovora. Tecnologia & Ciência Agropecuária, João Pessoa, v. 2, n. 2, p. 11, 2008.
COSTA, C. M. G. R. et al. Efeito inibitório do óleo essencial de manjericão sobre o crescimento in vitro de Erwinia carotovora. Tecnologia & Ciência Agropecuária, João Pessoa, v. 3, n. 3, p. 35-38, 2009.
FARIAS, P. K. S. et al. Antioxidant activity of essential oils from condiment plants and their effect on lactic cultures and pathogenic bacteria. Ciência Rural, Santa Maria, v. 49, n. 2, p. 1–12, 2019.
FERIOTTO, G. et al. Chemical composition of essential oils from Thymus vulgaris, Cymbopogon citratus and Rosmarinus officinalis, and their effects on the HIV-1 Tat Protein Function. Chemistry and Biodiversity, Zurich, v. 15, n. 2, p. e1700436. 2018.
FÜLLER, T. N. et al. Elionurus muticus as an alternative source of citral from Pampa biome, Brazil. Journal of Oleo Science, Porto Alegre, v. 63, n. 11, p. 1109–1116, 2014.
GAO, S. et al. Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida Species. Frontiers in Cellular and Infection Microbiology, Londres, v. 10, p. 1–14, 2020.
GMBH, B. V.; KANG, S. C.; MAY, R. Controle de bactérias fitopatogênicas de Xanthomonas spp. pelo óleo essencial e extratos de Metasequoia glyptostroboides Miki ex Hu in vitro e in vivo. Journal of Phytopathology, [s.l.], v. 158, n. 7‐8, pág. 479-486, 2010.
GOMES, A. M. A.; SILVEIRA, E. B.; MARIANO, R. L. R. Tratamento pós-colheita com cálcio e microrganismos para controle da podridão-mole em tomate. Horticultura Brasileira, Brasília, v. 23, n. 1, p. 108–111, 2005.
GONÇALVES et al. Actividad antibacteriana de los extractos de Cymbopogon citratus, Elionurus sp. y Tagetes minuta contra bacterias que causan mastitis. Revista Cubana de Plantas Medicinales, Havana, v. 18, n. 3, p. 487–494, 2013.
GRIF, K. et al. Copper-tolerance in Pseudomonas syringae pv. tomato and Xanthomonas spp. and the control of diseases associated with these pathogens in tomato and pepper. A systematic literature review. Crop Protection, [s.l.], v. 96, p. 144–150, 2017.
GUTIÉRREZ-PACHECO, M. M. et al. Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria M.M. Physiological and Molecular Plant Pathology, Michigan, v. 106, p. 281–291, 2019.
HASSAN, W. et al. Cromatografia gasosa associada à caracterização espectrométrica de massa de Curcuma longa: Proteção contra micróbios patogênicos e peroxidação lipídica em homogenato de tecido de rato. Jornal de ciências farmacêuticas do Paquistão, [s.l.], v. 29, n. 2, p.615-621. 2016.
HORVÁTH, G.; ÁCS, K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour and Fragrance Journal, [s.l.], v. 30, n. 5, p. 331–341, 2015.
KAISER, I. S. et al. Efeito de óleos exxenciais cítricos sobre Agrotis ipsilon (Hufnagel) (Lepidoptera : Noctuidae). Revista Univap, São José dos Campos, v. 22, n. 40, p. 390, 2016.
KARIM, Z.; HOSSAIN, M. S.; BEGUM, M. M. Ralstonia solanacearum: a threat to potato production in Bangladesh. Fundamental and Applied Agriculture, Bangladesh, v. 3, n. 1, p. 407-421, 2018.
KUMAR, P. et al. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitology Research, [s.l.], v. 112, n. 1, p. 69–76, 2013.
LANÇAS, F. M. Cromatografia em fase gasosa. São Carlos: Acta, 1993, 254 p.
LEE, Y. H. et al. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathology Journal, Seoul, v. 28, n. 1, p. 32–39, 2012.
LERMEN, C. et al. Essential oil content and chemical composition of Cymbopogon citratus inoculated with arbuscular mycorrhizal fungi under different levels of lead. Industrial Crops and Products, Montana, v. 76, p. 734–738, 2015.
LI, C.; YU, J. Chemical composition, antimicrobial activity and mechanism of action of essential oil from the leaves of Macleaya cordata (Willd.) R. Br. Journal of Food Safety, [s.l.], v. 35, n. 2, p. 227–236, 2015.
LIMA GUIMARÃES, L. G. et al. Óleo essencial de Lippia sidoides nativas de Minas Gerais: composição, estruturas secretoras e atividade antibacteriana. Revista Ciência Agronomica, Fortaleza, v. 45, n. 2, p. 267–275, 2014.
LONG, N. et al. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo. Journal of the Science of Food and Agriculture, [s.l.], v. 99, n. 9, p. 4423–4429, 2019.
LUCAS, G. C. et al. Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesquisa Agropecuaria Brasileira, Brasília, v. 47, n. 3, p. 351–359, 2012.
LUO, M. et al. Effects of citral on Aspergillus flavus spores by quasi-elastic light scattering and multiplex microanalysis techniques. Acta Biochimica et Biophysica Sinica, [s.l.], v. 36, n. 4, p. 277–283, 2004.
MARTINS, P. M. M. et al. Persistence in phytopathogenic bacteria: Do we know enough? Frontiers in Microbiology, Lausanne, v. 9, p. 1–14, 2018.
MIRANDA, C. A. S. F. et al. óleos essenciais de folhas de diversas espécies: Propriedades antioxidantes e antibacterianas no crescimento espécies patogênicas. Revista Ciência Agronomica, Fortaleza, v. 47, n. 1, p. 213–220, 2016.
MOGHADDAM, M. et al. Chemical composition, antibacterial and antifungal activities of seed essential oil of Ferulago angulata. International Journal of Food Properties, [s.l.], v. 21, n. 1, p. 158–170, 2018.
MURIEL-GALET, V. et al. Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology, Amsterdam, v. 157, n. 2, p. 195–201, 2012.
NADARASAH, G.; STAVRINIDES, J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiology Reviews, Amsterdam, v. 35, n. 3, p. 555–575, 2011.
NAKAMURA, Y. et al. A phase II detoxification enzyme inducer from lemongrass: Identification of citral and involvement of electrophilic reaction in the enzyme induction. Biochemical and Biophysical Research Communications, New York, v. 302, n. 3, p. 593–600, 2003.
ONAWUNMI GO. Evaluation of the antimicrobial activity of citral. Letters in Applied Microbiology, Oxford, v. 9, n. 3, p. 105-108, 1989.
OSTROSKY, E. A. et al. Métodos para avaliação da atividade antimicrobiana e determinação da Concentração Mínima Inibitória (CMI) de plantas medicinais. Brazilian Journal of Pharmacognosy, São Paulo, v. 18, n. 2, p. 301–307, 2008.
OZTURK, S.; ERCISLI, S. The chemical composition of essential oil and in vitro antibacterial activities of essential oil and methanol extract of Ziziphora persica Bunge. Journal of Ethnopharmacology, Limerick, v. 106, n. 3, p. 372–376, 2006.
PANDEY, A. K.; RAI, M. K.; ACHARYA, D. Chemical Composition and antimycotic activity of the essential oils of corn mint (Mentha arvensis) and lemon grass (Cymbopogon flexuosus) against human pathogenic fungi. Pharmaceutical Biology, Lisse, v. 41, n. 6, p. 421–425, 2003.
PARET, M. L. et al. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant disease, Lisse, v. 94, n. 5, p. 521–527, 2010.
PARK, M. J. et al. Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia, Milano, v. 80, n. 5, p. 290–296, 2009.
PATEL, J. B. et al. M07-A10: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard, 10. ed. CLSI (Clinical and Laboratory Standards Institute), v. 35, n. 2, 2015.
PIERI, F. A. et al. Inhibition of Escherichia coli from mastitic milk by copaiba oil. Semina: Ciências Agrarias, Londrina, v. 32, p. 1929–1934, 2011. Supl. 1.
POPOVIĆ, T. et al. A preliminary study of antibacterial activity of thirty essential oils against several important plant pathogenic bacteria. Pesticidi i fitomedicina, Banatska, v. 33, n. 3–4, p. 185–195, 2018.
RAHMAN, A.; KANG, S. C. Inhibition of foodborne pathogens and spoiling bacteria by essential oil and extracts of Erigeron Ramosus (WALT.) B.S.P. Journal of Food Safety, [s.l.], v. 29, n. 2, p. 176–189, 2009.
RDINÇ, E. et al. Evolution of common beans collected from lake van basin for their resistance to the common bacterial blight (Xanthomonas axonopodis pv. phaseoli). Applied Ecology and Environmental Research, Budapest, v. 16, n. 4, p. 5181-5191, 2018.
REYNOSO, E. C. et al. Trends and perspectives in immunosensors for determination of currently-used pesticides: the case of glyphosate, organophosphates, and neonicotinoids. Biosensors, Barking, v. 9, n. 1, p. 20, 2019.
ROCHA, C. R. et al. Óleo essencial de Rosmarinus officinalis L. como sanitizante natural para controle de bactérias sésseis em superfície utilizada para corte de alimentos. Revista do Instituto Adolfo Lutz, São Paulo, v. 73, n. 4, p. 338–344, 2014.
ROMAN, S. S. et al. Ação antimicrobiana do óleo essencial de folhas de Casearia sylvestris Swartz. Erechim Perspect, Erechim, v. 41, n. 153, p. 115-123, 2017.
ROSSI, G. G. et al. Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microbial pathogenesis, Londres, v. 113, p. 335-341, 2017.
SANTOS, M. M. et al. Estudos dos constituintes químicos e atividade antibacteriana do óleo essencial de Lippia gracilis a Xanthomonas campestris pv. viticola “in vitro”. Summa Phytopathologica, Jaguariuna, v. 40, n. 3, p. 277–280, 2014.
SEMENIUC, A. C.; POP, C. R.; ROTAR, A. M. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. Journal of Food and Drug Analysis, Tai-Pei, v. 25, n. 2, p. 403–408, 2016.
SIDDIQUE, S. et al. Chemical composition and insecticidal activities of essential oils of Myrtaceae against Tribolium castaneum (Coleoptera: Tenebrionidae). Polish Journal of Environmental Studies, [s.l.], v. 26, n. 4, p. 1653–1662, 2017.
SIENKIEWICZ, M. et al. The ability of selected plant essential oils to enhance the action of recommended antibiotics against pathogenic wound bacteria. Journal of Essential Oil Bearing Plants, [s.l.], v. 20, n. 5, p. 310–317, 2017.
SILVA, J. R. C. et al. Bactérias endofíticas no controle e inibição in vitro de Pseudomonas syringae pv. tomato, agente da pinta bacteriana do tomateiro. Ciência e Agrotecnologia, Lavras, v. 32, n. 4, p. 1062–1072, 2008.
SILVA, N. I. D. E. et al. Use of endophytes as biocontrol agents. Fungal Biology Reviews, Londres, v. 33, n. 2, p. 133–148, 2018.
SILVEIRA, S. M. D., SCHEUERMANN, G. N., SECCHI, F. L., VERRUK, S., KROHN, M., & VIEIRAI, C. R. W. Composição química e atividade antibacteriana dos óleos essenciais de Cymbopogon winterianus (citronela), Eucalyptus paniculata (eucalipto) e Lavandula angustifolia (lavanda). Revista do Instituto Adolfo Lutz, São Paulo, v. 71, n. 3, p. 471–480, 2012.
SILVESTRI, J. D. F. et al. Chemical composition and antioxidant and antibacterial activities of clove essential oil (Eugenia caryophyllata Thunb). Revista Ceres, Viçosa, v. 57, n. 5, p. 589-594, 2010.
SOLIMAN, S. S. M. et al. Calli essential oils synergize with lawsone against multidrug resistant pathogens. Molecules, Basel, v. 22, n. 12, p. 1–13, 2017.
SOUZA, G. S. et al. Potencial alelopático de seis espécies do gênero Croton L. na germinação de alface e tomate. Iheringia, Série Botânica, Porto Alegre, v. 72, n. 2, p. 155–160, 2017.
SUENIA, E. et al. Atividade antibacteriana de óleos essenciais de citronela, alecrim e erva-cidreira no controle in vitro da bactéria Ralstonia solanacearum em tomateiro. Tecnologia e Ciência Agropecuária, João Pessoa, v. 3, n. 3, p. 29-34, 2009.
TAJIDIN, N. E. et al. Chemical composition and citral content in lemongrass (Cymbopogon citratus) essential oil at three maturity stages. African Journal of Biotechnology, Nairobi, v. 11, n. 11, 2012.
TIAN, Q. et al. DNA barcoding for efficient species- and pathovar-level identification of the quarantine plant pathogen xanthomonas. PLoS ONE, San Francisco, v. 11, n. 11, p. 1–16, 2016.
TODOROVIĆ, B. et al. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms. Journal of Environmental Science and Health, Part B, New York, v. 51, n. 12, p. 832–839, 2016.
TORRES, J. P. et al. Detecção de Xanthomonas axonopodis pv. phaseoli em sementes de feijoeiro provenientes do estado do Paraná, Brasil. Summa Phytopathologica, Jaguariuna, v. 35, n. 2, p. 136–1389, 2009.
TURINA AV, NOLAN MV, ZYGADLO JA & PERILLO MA. Natural terpenes: self-assembly and membrane partitioning. Biophysical Chemistry, Amsterdam, v. 22, n. 2, p. 101-113, 2006.
VALERIANO, C. et al. Atividade antimicrobiana de óleos essenciais em bactérias patogênicas de origem alimentar. Revista Brasileira de Plantas Medicinais, Botucatu, v. 14, n. 1, p. 57–67, 2012.
VILLA-RUANO, N. et al. Essential oil composition, carotenoid profile, antioxidant and antimicrobial activities of the parasitic plant Cuscuta mitraeformis. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, Santiago, v. 16, n. 5, p. 463–470, 2017.
VUKOVIC, N. et al. Antimicrobial activities of essential oil and methanol extract of Teucrium montanum. Evidence-based Complementary and Alternative Medicine, Oxford, v. 4, n. 1, p. 17–20, 2007. Supl. 1.
WAHABZADA, M. et al. Metro maps of plant disease dynamics-automated mining of differences using hyperspectral images. PLoS ONE, San Francisco, v. 10, n. 1, p. 1–21, 2015.
YULIAR; NION, Y. A.; TOYOTA, K. Recent trends in control methods for bacterial wilt diseases caused Ralstonia solanacearum. Microbes and Environments, [s.l.], v. 30, n. 1, p. 1–11, 2015.
ZHANG, H. et al. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Research International, Essex, v. 39, n. 8, p. 833–839, 2006.
Published
Versions
- 2022-07-20 (2)
- 2022-06-29 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.