Plant cytogenetics tests can predict toxic effects on human cells: genotoxic and mutagenic effects of Tityus serrulatus scorpion venom on vegetal and human cells
DOI:
https://doi.org/10.5902/2179460X66067Keywords:
Cytogenotoxicity, mutagenic action, tunel, comet assay, micronucleiAbstract
The effects of Tityus serrulatus venom was accessed on the cell cycle and genetic material of the Lactuca sativa L. and compared with the damages to human leukocytes, in order to evaluate the genotoxic and mutagenic potential of toxins on cell types very different. The occurrence of cell cycle alterations and DNA fragmentation was evaluated in Lactuca sativa. Incubations of venom with human leukocytes were also held with subsequent evaluation of cell proliferation index, micronucleus and fragmented DNA. The T. serrulatus venom showed cytogenotoxic, reducing mitotic index and induced alterations in the cell cycle and micronuclei formation. The occurrence of cell death was evidenced by the detection of condensed nuclei, positive TUNEL signals, and presence of DNA fragmentation on lettuce cells. The scorpion venom induced DNA fragmentation and micronuclei in leukocytes. Further, the role of peptides and proteases from this venom in inducing the observed damage was discussed.
Downloads
References
ABDEL-RAHMAN, M. A.; QUINTERO-HERNÁNDEZ, V.; POSSANI, L. D. Scorpion venom gland transcriptomics and proteomics: An Overview. In: GOPALAKRISHNAKONE, P.; CALVETE, J. (eds). Venom Genomics and Proteomics. Dordrecht: Springer, 2016. p. 1-17. DOI: https://doi.org/10.1007/978-94-007-6649-5_29-1
ANDRADE-VIEIRA, L. F.; BOTELHO, C. M.; LAVIOLA, B. G.; PALMIERI, M. J.; PAÇA-FONTES, M. M. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. An Acad Bras Cienc., [s.l]. v. 86, n. 1, p. 373–382, 2014. DOI: https://doi.org/10.1590/0001-3765201420130041
ANDRADE-VIEIRA, L. F.; GEDRAITE. L. S.; CAMPOS, J. M. S.; DAVIDE, L. C. Spent Pot Liner (SPL) induced DNA damage and nuclear alterations in root tip cells of Allium cepa as a consequence of programmed cell death. Ecotoxicol Environ Saf., [s.l.], v. 74, n. 4, 882–888, 2011. DOI: https://doi.org/10.1016/j.ecoenv.2010.12.010
ANDRADE-VIEIRA, L. F.; PALMIERI, M. J.; BOTELHO, C. M.; LUBER, J.; SILVA, M. F. F. Evaluation of the antimutagenic potential of Psidium guajava L. extracts via plant bioassays. South A J Botany, [s.l.], v. 113, p. 443–448, 2017. DOI: https://doi.org/10.1016/j.sajb.2017.10.002
CERNI, F. A.; PUCCA, M. B.; ZOCCAL, K. F.; FRANTZ, F. G.; FACCIOLI, L. H.; ARANTES, E. C. Expanding biological activities of Ts19 Frag-II toxin: Insights into IL-17 production. Toxicon, [s.l.], v. 134, p. 18-25, Aug. 2017. DOI: https://doi.org/10.1016/j.toxicon.2017.05.013
COLLINS, A. R.; DUTHIE, S. J.; DOBSON, V. L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, [s.l.], v. 14, n. 9, p. 1733–1735, 1993. DOI: https://doi.org/10.1093/carcin/14.9.1733
COLLINS, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol., [s.l.], v. 26, n. 3, p. 249–261, 2004. DOI: https://doi.org/10.1385/MB:26:3:249
COLOGNA, C. T.; MARCUSSI, S.; GIGLIO, J. R.; SOARES, A. M.; ARANTES, E. C. Tityus serrulatus scorpion venom and toxins: an overview. Protein Pept Lett., [s.l.], v.16, n. 8, p. 920–932, 2009. DOI: https://doi.org/10.2174/092986609788923329
CUPO, P. Clinical update on scorpion envenoming. Rev. Soc. Bras. Med. Trop., [s.l.], v. 48, n. 6, p. 642-649, 2015. DOI: https://doi.org/10.1590/0037-8682-0237-2015
DONG, Y.; ZHANG, J. Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays. Ecotoxicol Environ Saf., [s.l.], v. 73, n. 5, p. 944–948, 2010. DOI: https://doi.org/10.1016/j.ecoenv.2009.12.026
DOYLE, J. J.; DOYLE, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull., [s.l.], v. 19, n. 1, p.11–15, 1987.
FENECH, M.; MORLEY, A. A. Measurement of micronuclei in lymphocytes. Mutat Res Mutagen Relat Subj., [s.l.]. v. 147, p. 29–36, 1985. DOI: https://doi.org/10.1016/0165-1161(85)90015-9
FENECH, M. The in vitro micronucleus technique. Mutat Res - Fundam Mol Mech Mutagen., [s.l.], v. 455, n. 1-2, p. 81–95, 2000. DOI: https://doi.org/10.1016/S0027-5107(00)00065-8
FISKESJÖ, G. The Allium test as a standard in environmental monitoring. Hereditas., [s.l.], v. 102, n. 1, p. 99–112, 1985. DOI: https://doi.org/10.1111/j.1601-5223.1985.tb00471.x
FISKESJÖ, G. The Allium test - an alternative in environmental studies: the relative toxicity of metal ions. Mutat Res - Fundam Mol Mech Mutagen., [s.l.], v. 197, n. 2, p. 243–260, 1988. DOI: https://doi.org/10.1016/0027-5107(88)90096-6
GAJSKI, G.; GARAJ-VRHOVAC. V. Genotoxic potential of bee venom (Apis Mellifera) on human peripheral blood lymphocytes in vitro using single cell gel electrophoresis assay. J Environ Sci Heal Part A., [s.l.], v. 43, p. 1279–1287, 2008. DOI: https://doi.org/10.1080/10934520802177862
GALVANI, N. C.; VILELA, T. C.; DOMINGOS, A. C.; FAGUNDES, M. Í.; BOSA, L. M.; DELLA VECHIA, I. C.; SCUSSEL, R.; PEREIRA, M.; STEINER, B. T.; DAMIANI, A. P.; CHÁVEZ-OLÓRTEGUI, C.; ANDRADE, V. M.; ÁVILA, R. A. M. Genotoxicity evaluation induced by Tityus serrulatus scorpion venom in mice. Toxicon. [s.l.], v. 140, p. 132-138, 2017. DOI: https://doi.org/10.1016/j.toxicon.2017.10.024
GRANT, W. F. Higher plant assays for the detection of chromosomal aberrations and gene mutations - a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res., [s.l.], v. 426, p. 107–112, 1999. DOI: https://doi.org/10.1016/S0027-5107(99)00050-0
GRANT, W. F.; OWENS, E. T. Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens. Mutat Res., [s.l.], v. 613, p. 17–64, 2006. DOI: https://doi.org/10.1016/j.mrrev.2006.04.002
GUPTA, S. DEBNATH, A.; SAHA, A.; GIRI, B.; TRIPATHI, G.; VEDASIROMONI, J. R.; GOMES, A.; GOMES, A. INDIAN black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res., [s.l.], v. 31, p. 817–825, 2007. DOI: https://doi.org/10.1016/j.leukres.2006.06.004
HARA, R. V.; MARIN-MORALES, M. A. In vitro and in vivo investigation of the genotoxic potential of waters from rivers under the influence of a petroleum refinery (São Paulo State - Brazil). Chemosph., [s.l.], v. 174, p. 321-330, 2017. DOI: https://doi.org/10.1016/j.chemosphere.2017.01.142
HARVEY, A. L. Toxins and drug discovery. Toxicon., [s.l.], v. 92, p. 193–200, 2014. DOI: https://doi.org/10.1016/j.toxicon.2014.10.020
HOUSLEY, D. M.; HOUSLEY, G. D.; LIDDELL, M. J.; JENNINGS, E. A. Scorpion toxin peptide action at the ion channel subunit level. Neuropharm., [s.l.], v. 127, p. 46-78, 2017. DOI: https://doi.org/10.1016/j.neuropharm.2016.10.004
KANG, T. S.; GEORGIEVA, D.; GENOV, N.; MURAKAMI, M. T.; SINHA, M.; KUMAR, R. P.; DEY, S.; SHARMA, S.; VRIELINK, A.; BETZEL, C.; TAKEDA, S.; ARNI, R. K.; SINGH, T. P.; KINI, R. M. Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis. FEBS J., [s.l.], v. 278, p. 4544–4576, 2011. DOI: https://doi.org/10.1111/j.1742-4658.2011.08115.x
KIRSCH-VOLDERS, M. Towards a validation of the micronucleus test. Mutat Res., [s.l.], v. 392, p. 1-4, 1997. DOI: https://doi.org/10.1016/S0165-1218(97)00039-6
KOH, C. Y.; KINI, R. M. From snake venom toxins to therapeutics - Cardiovascular examples. Toxicon., [s.l.], v. 59, n° 4, p. 497–506, 2012. DOI: https://doi.org/10.1016/j.toxicon.2011.03.017
LEBAUDY, A.; VÉRY, A. A.; SENTENAC, H. K+ channel activity in plants: Genes, regulations and functions. FEBS L., [s.l.], v. 581, p. 2357–2366, 2007. DOI: https://doi.org/10.1016/j.febslet.2007.03.058
LEE, Y. J.; KANG, S. J.; KIM, B. M.; KIM, Y. J.; WOO, H. D.; CHUNG, H. W. Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem Biol Interact., [s.l.], v. 169, p. 189–197, 2007. DOI: https://doi.org/10.1016/j.cbi.2007.06.036
LEME, D. M.; MARIN-MORALES, M. A. Allium cepa test in environmental monitoring: A review on its application. Mutat Res - Rev Mutat Res., [s.l.], v. 682, p. 71–81, 2009. DOI: https://doi.org/10.1016/j.mrrev.2009.06.002
LOWE, R. M.; FARRELL, P. M. A portable device for the electrical extraction of scorpion venom. Toxicon., [s.l.], v. 57, p. 244-247, 2011. DOI: https://doi.org/10.1016/j.toxicon.2010.11.017
MARCUSSI, S.; SANTOS, P. R. S.; MENALDO, D. L.; SILVEIRA, L. B.; SANTOS-FILHO, N. A.; MAZZI, M. V.; SILVA, S. L.; STÁBELI, R. G.; ANTUNES, L. M. G.; SOARES, A. M. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutat Res - Genet Toxicol Environ Mutagen., [s.l.], v. 724, p. 59–63, 2011. DOI: https://doi.org/10.1016/j.mrgentox.2011.06.004
MARCUSSI, S.; STÁBELI, R. G.; SANTOS-FILHO, N. A.; MENALDO, D. L.; PEREIRA, L. L. S.; ZULIANI, J. P.; CALDERON, L. A.; SILVA, S. L.; ANTUNES, L. M. G.; SOARES, A. M. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon., [s.l.], v. 65, p. 9–14, 2013. DOI: https://doi.org/10.1016/j.toxicon.2012.12.020
OLIVEIRA-MENDES, B. B. R.; MIRANDA, S. E. M.; SALES-MEDINA, D. F.; MAGALHÃES, B. F.; KALAPOTHAKIS, Y.; SOUZA, R. P.; CARDOSO, V. N.; BARROS, A. L. B.; GUERRA-DUARTE, C.; KALAPOTHAKIS, E.; HORTA, C. C. R. Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis., [s.l.], v. 13, e0007048, 19 April, 2019. DOI: https://doi.org/10.1371/journal.pntd.0007048
PALMIERI, M. J.; ANDRADE-VIEIRA, L. F.; CAMPOS, J. M. S.; GEDRAITE, L. S.; DAVIDE , L. C. Cytotoxicity of Spent Pot Lineron Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays. Ecotoxicol Environ Saf., [s.l], v. 133, p. 442-447, 2016b. DOI: https://doi.org/10.1016/j.ecoenv.2016.07.016
PALMIERI, M. J.; ANDRADE-VIEIRA, L. F.; TRENTO, M. V. C.; ELEUTÉRIO, M. W. F.; LUBER, J.; DAVIDE, L.; MARCUSSI, S. Cytogenotoxic effects of Spent Pot Liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water Air Soil Pollut., [s.l.], v. 227, p. 156-166, 2016a. DOI: https://doi.org/10.1007/s11270-016-2809-z
PALMIERI, M. J. LACTUCA SATIVA: BIOINDICADOR PARA ANÁLISE DO EFEITO GENOTÓXICO DE PEÇONHAS. Doctorade—[s.l.] Universidade Federal de Lavras (UFLA), 2016.
PALMIERI, M. J.; BARROSO, A. R.; ANDRADE-VIEIRA, L. F.; MONTEIRO, M. C.; SOARES, A. M.; CESAR, P. H. S.; BRAGA, M. A.; TRENTO, M. V. C.; MARCUSSI, S.; DAVIDE, L. C. Polybia occidentalis and Polybia fastidiosa venom: a cytogenotoxic approach of effects on human and vegetal cells. Drug Chem Toxicol., [s.l.], v. 44, p. 1-9, 2019. DOI: https://doi.org/10.1080/01480545.2019.1631339
PUCCA, M. B.; CERNI, F. A.; PINHEIRO-JUNIOR, E. L.; ZOCCAL, K. F.; BORDON, K. C. F.; AMORIM, F. G.; PEIGNEUR, S.; VRIENS, K.; THEVISSEN, K.; CAMMUE, B. P. A.; MARTINS JÚNIOR, R. B.; ARRUDA, E.; FACCIOLI, L. H.; TYTGAT, J.; ARANTES, E. C. Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors. Peptides., [s.l.], v. 82, p. 44-51, 2016. DOI: https://doi.org/10.1016/j.peptides.2016.05.008
R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statistical Computing. Viena R Found Stat Comput. 2015.
RECKZIEGEL, G. C.; PINTO, J. R. V. L. Scorpionismo in Brazil in the years 2000 to 2012. J. Venom Anim. Toxins Incl. Trop. Dis., [s.l.], v. 20, p. 46-54, 2014. DOI: https://doi.org/10.1186/1678-9199-20-46
REIS, G. B. D.; ANDRADE-VIEIRA, L. F.; MORAES, I. C.; CESAR, P. H. S.; MARCUSSI, S.; DAVIDE, L. C. Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents. Ecotoxicol Environ Saf., [s.l.], v. 142, p. 110-116, 2017. DOI: https://doi.org/10.1016/j.ecoenv.2017.04.004
SANTOS, F. E.; CARVALHO, M. S. S.; SILVEIRA, G. L.; CORREA, F. F.; CARDOSO, M. D. G.; ANDRADE-VIEIRA, L. F.; VILELA, L. R. Phytotoxicity and cytogenotoxicity of hydroalcoholic extracts from Solanum muricatum Ait. and Solanum betaceum Cav. (Solanaceae) in the plant model Lactuca sativa. Environ Sci Pollut Res., [s.l.], v. 25, p. 1-11, 2018.
SILVA, M. A.; SOUZA, T. G.; MELO, M. E. G.; SILVA, J. M.; LIMA, J. R.; LIRA, A. F. A.; AGUIAR-JÚNIOR, F. C. A.; MARTINS, R. D.; JORGE, R. J. B.; CHAGAS, C. A.; TEIXEIRA, V. W.; TEIXEIRA, A. A. C. Tityus stigmurus venom causes genetic damage in blood and testicular cells and affects the number and morphology of gametogenic lineage cells in mice. Toxicon., [s.l.], v. 185, p. 114-119, 2020. DOI: https://doi.org/10.1016/j.toxicon.2020.07.006
SINGH, N. P.; MCCOY, M. T.; TICE, R. R.; SCHNEIDER, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res., [s.l.], v. 175, p. 184–191, 1988. DOI: https://doi.org/10.1016/0014-4827(88)90265-0
ÜSTÜN, S.; HAFRÉN, A.; HOFIUS, D. Autophagy as a mediator of life and death in plants. Curr Opin Plant Biol., [s.l.], v. 40, p. 122-130, 2017. DOI: https://doi.org/10.1016/j.pbi.2017.08.011
ZAMBELLI, V. O.; PASQUALOTO, K. F.; PICOLO, G.; CHUDZINSKI-TAVASSI, A. M.; CURY, Y. Harnessin the knowledge of animal toxins to generate drugs. Pharmacol Res., [s.l.], v. 112, p. 30-36, 2016. DOI: https://doi.org/10.1016/j.phrs.2016.01.009
ZARGAN, J.; SAJAD, M.; UMAR, S.; NAIME, M.; ALI, S.; KHAN, H. A. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp Mol Pathol., [s.l.], v. 91, p. 447–454, 2011. DOI: https://doi.org/10.1016/j.yexmp.2011.04.008
ZHOUA, S.; HONG, Q.; LI, Y.; LI. Q. Wang M. Autophagy contributes to regulate the ROS levels and PCD progress in TMV infected tomatoes. Plant Sci., [s.l.], v. 269, p. 12–19, 2018. DOI: https://doi.org/10.1016/j.plantsci.2017.11.002
ZOCCAL, K. F.; BITENCOURT, C. S.; SORGI, C. A.; BORDON, K. C. F.; SAMPAIO, S. V.; ARANTES, E. C.; FACCIOLI, L. H. Ts6 and Ts2 from Tityus serrulatus venom induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Toxicon., [s.l.], v. 61, p. 1–10, 2013. DOI: https://doi.org/10.1016/j.toxicon.2012.10.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.