Ocorrência de substâncias químicas en sitemas de abastecimento de água do Brasil: Uma abordagem não-paramétrica para a análise estatística de dados do Sisagua

Autores

DOI:

https://doi.org/10.5902/2179460X63368

Palavras-chave:

Dados ambientais, Dados censurados, Estimadores de Kaplan-Meier, Não detectados, Água potável

Resumo

Este estudo teve como objetivo o desenvolvimento de uma metodologia para o tratamento estatístico de dados de monitoramento de substâncias químicas em sistemas de abastecimento de água do Brasil, utilizando-se dados do SISAGUA (Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano). Propôs-se uma metodologia para a análise de consistência da base de dados, bem soluções para todas as inconsistências identificadas. Em seguida, estatísticas descritivas foram estimadas pelo método de Kaplan-Meier (KM), avaliando-se a sua aplicabilidade a diferentes proporções de dados censurados. Os parâmetros descritivos obtidos pelo método de KM foram comparados aos obtidos pelo método de substituição. De modo geral, o método de substituição demonstrou maior suscetibilidade a estimativas enviesadas, notadamente com o aumento do percentual de censura e em meio a elevados limites de quantificação e detecção, conduzindo àestimativa de parâmetros descritivos mais altos em relação aos estimados pelo método de KM. O estudo reforça a necessidade do uso de métodos apropriados para a análise de dados ambientais, além de evidenciar que o tratamento desse tipo de dado pode ser uma tarefa complexa. Dessa forma, a metodologia proposta pode ser útil a pesquisadores, uma vez que apresenta um processo sistemático de identificação e correção de inconsistências, bem como uma abordagem não paramétrica para a obtenção de estatísticas descritivas para dados de monitoramento ambiental.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fernanda Bento Rosa Gomes, Universidade Federal de Juiz de Fora

Engenheira Ambiental e Sanitarista e mestranda em Engenharia Civil pela Universidade Federal de Juiz de Fora

Taciane de Oliveira Gomes de Assunção, Universidade Federal de Juiz de Fora (UFJF)

Graduanda de Engenharia Ambiental e Sanitária na Universidade Federal de Juiz de Fora

Guilherme Bento Nicolau, Universidade Federal de Juiz de Fora (UFJF)

Engenheiro Ambiental e Sanitarista pela Universidade Federal de Juiz de Fora

Pedro Fialho Cordeiro, Centro de Inovação e Tecnologia SENAI FIEMG

Pesquisador do Centro de Inovação e Tecnologia SENAI FIEMG e responsável pelo Laboratório de Hidrossedimentometria do Instituto SENAI de Tecnologia em Meio Ambiente.

Samuel Rodrigues Castro, Universidade Federal de Juiz de Fora (UFJF)

Professor adjunto do Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Juiz de Fora (UFJF) e professor permanente do Programa de Pós-Graduação em Ambiente Construído (PROAC) e Programa de Pós-Graduação em Engenharia Civil (PEC), ambos da UFJF.

Renata de Oliveira Pereira, Universidade Federal de Juiz de Fora (UFJF)

Professora efetiva do Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Juiz de Fora (UFJF) e atua no Programa de Pós-Graduação em Ambiente Construído (PROAC) e Programa de Pós-Graduação em Engenharia Civil (PEC) - UFJF.

Emanuel Manfred Freire Brandt, Universidade Federal de Juiz de Fora (UFJF)

Professor adjunto do Departamento de Engenharia Sanitária e Ambiental (ESA) da Universidade Federal de Juiz de Fora (UFJF). Docente permanente do Programa de Pós­-Graduação em Engenharia Civil (PEC) da UFJF, área de concentração em Saneamento e Meio Ambiente.

Referências

ANALYTICAL METHODS COMMITTEE. Using the Grubbs and Cochran tests to identify outliers. Analytical Methods, v. 7, n. 19, p. 7948-7950, 2015.

ANTWEILER, R. C.; TAYLOR, H. E.Evaluation of Statistical Treatments of Left-Censored Environmental Data using Coincident Uncensored Data Sets: I. Summary Statistics. Environmental Science and Technology, v. 42, p. 3732-3738, 2008.

ATSDR - Agency for Toxic Substances & Disease Registry. Toxicological profile for 1,2-dichloroethane. Atlanta: US Department of Health and Human Services, 1999.

BARBOSA, A. M. C.; SOLANO, M. L. M.; UMBUZEIRO, G. A. Pesticides in drinking water – the Brazilian monitoring program. Frontiers in Public Health, v. 3, p. 246, 2015.

BRASIL. Ministério da Saúde. Manual de procedimentos de entrada de dados do sistema de informação de vigilância da qualidade da água para consumo humano (Sisagua). 2016. Available from: https://www.saude.go.gov.br/images/imagens_migradas/upload/arquivos/2016-03/manual-de-procedimentos-de-entrada-de-dados-do-sisagua-08-01-2016-1.pdf Accessed May 2022.

BRASIL. Ministério da Saúde. Portaria de Consolidação nº 5, de 28 de setembro de 2017 – ANEXO XX. Diário Oficial [da] República Federativa do Brasil, Poder Executivo, Brasília, DF, 03 out. 2017. Seção 1, p. 360.

BRASIL. Ministério da Saúde. Portaria GM/MS nº 888, de 4 de maio de 2021. Diário Oficial [da] República Federativa do Brasil, Poder Executivo, Brasília, DF, 7 mai. 2021. Seção 1, p. 127.

BRASIL. Ministério da Saúde. Sisagua. Available from: http://sisagua.saude.gov.br/sisagua/paginaExterna.jsf. Accessed October 2020.

BOLKS, A.; DeWIRE, A.; HARCUM, J. B. Baseline assessment of left-censored environmental data using R. USEPA. Tech Notes 10. 2014. Available from: https://www.epa.gov/sites/production/files/2016-05/documents/tech_notes_10_jun2014_r.pdf. Accessed October 2020.

CASSANEGO, M. B. B.; DROSTE, A. Avaliação do padrão espacial da qualidade da água de um rio no Sul do Brasil por meio da análise multivariada de indicadores biológico e químicos, Brazilian Journal of Biology, v. 77, n. 1, p. 118-126, 2017.

CETESB - Companhia de Tecnologia de Saneamento Ambiental. Relatório de estabelecimento de valores orientadores para solos e águas subterrâneas no estado de São Paulo. São Paulo: CETESB, 2001.

CHRISTOFARO, C.; LEÃO, M. D. Tratamento de dados censurados em estudos ambientais. Química Nova, v. 37, n. 1, p. 104-110, 2014.

DALZOCHIO, T. et al. Water quality parameters, biomarkers and metal bioaccumulation in native fish captured in the Ilha River, Southern Brazil. Chemosphere, 189, p. 609-618, 2017.

DELIGNETTE-MULLER, M. L.; DUTANG, C. fitdistrplus: An R Package for Fitting Distributions. 2018. Available from: https://cran.r-project.org/web/packages/fitdistrplus/vignettes/paper2JSS.pdf. Accessed October 2020.

FLIKKEMA, R. M. Statistical methodology for data with multiple limits of detection. Tese (Doutorado). Western Michigan University, Michigan, 2016.

GEORGE, B.J.; GAINS-GERMAIN, L.; BROMS, K.; BLACK, K.; FURMAN, M.; HAYS, M.D.; THOMAS, K.W.; SIMMONS, J.E. Censoring Trace-Level Environmental Data: Statistical Analysis Considerations to Limit Bias. Environmental Science and Technology, v. 55, p. 3786-3795, 2021.

GILLESPIE, B. W.; CHEN, Q.; REICHERT, H.; FRANZBLAU, A.; HEDGEMAN, E.; LEPKOWSKI, J.; ADRIAENS, P.; DEMOND, A.; LUKSEMBURG, W.; GARABRANT, D. H. Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator. Epidemiology, v. 21, n. 4, S64–S70, 2010.

GRUBBS, F. Procedures for detecting outlying observations in samples. Technometrics, p. 11, n. 1, p. 1-21, 1979.

HELSEL, D. R. Fabricating data: How substituting values for nondetects can ruin results, and what can be done about it. Chemosphere, v. 65, p. 2434-2439, 2006.

HELSEL, D. R.; HIRSCH, R. M.; Statistical Methods in Water Resources. Washington: U.S. Geological Survey. 2002.

HELSEL, D. R. More than obvious: Better methods for interpreting nondetect data. Environmental Science and Technology, v. 39, n. 20, p. 419-423, 2005.

HELSEL, D. R. Nondetects and data analysis statistics for censored environmental data. New York: John Wiley and Sons. 2004.

HELSEL, D. R. Statistics for Censored Environmental Data Using Minitab and R. 2 ed. New York: John Wiley and Sons. 2012.

HEWETT, P.; GANSER, G. H. A comparison of several methods for analyzing censored data. Annals of Occupational Hygiene, v. 51, n. 7, p. 611-632, 2007.

HUYNH, T.; RAMACHANDRAN, G.; BANERJEE, S.; MONTEIRO, J.; STENZEL, M.; SANDLER, D. P.; ENGEL, L. S.; KWOK, R. K.; BLAIR, A.; STEWART, P. A. Comparison of Methods for Analyzing Left-Censored Occupational Exposure Data.The Annals of Occupational Hygiene, v. 58, n. 9, p. 1126–1142, 2014.

INSTITUTO TRATA BRASIL. Acesso à água nas regiões norte e nordeste do Brasil: desafios e perspectivas. 2018. Available From: https://tratabrasil.org.br/images/estudos/acesso-agua/tratabrasil_relatorio_v3_A.pdf. Accessed May 2022.

JEONG, J.; PARK, E.; HAN, W. S.; KIM, K.; CHOUNG, S.; CHUNG, I. M. Identifying outliers of non-Gaussian groundwater state data based on ensemble estimation for long-term trends. Journal of Hydrology, v. 548, p. 135-144, 2017.

KAPLAN, E. L.; MEIER, O. Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, v. 53, p. 457-481, 1958.

LEE, L.; HELSEL, D. Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing. Computers and Geosciences, v. 33, n. 5, p. 696-704, 2007.

LEE, L. Package ‘NADA’. 2017. Available from: https://cran.r-project.org/web/packages/NADA/NADA.pdf. Accessed October 2020.

LEITH, K. F.; BOWERMAN, W. W.; WIERDA, M. R.; BEST, D. A.; GRUBB, T. G.; SIKARSKE, J. G. A comparison of techniques for assessing central tendency in left-censored data using PCB and p,p′DDE contaminant concentrations from Michigan’s Bald Eagle Biosentinel Program. Chemosphere, v. 80, n. 1, p. 7-12, 2010.

MAE. Department of Municipal Affairs and Environment. Government of Newfoundland and Labrador. Drinking Water Quality Database - Detection Limits. Available from: https://www.gov.nl.ca/ecc/files/waterres-quality-drinkingwater-pdf-detect-limits.pdf. Accessed May 2022.

MCGRORY E.; HOLIAN E.; MORRISON L. Assessment of groundwater processes using censored data analysis incorporating non-detect chemical, physical, and biological data. Journal of Contaminant Hydrology, v. 235, p. 103706, 2020.

MANN, H. B.; WHITNEY, D. R. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, v. 18, n. 1, p. 50-60, 1947.

MARIMON, M. P. C.; ROISENBERG, A.; SUHOGUSOFF, A. V.; VIERO, A. P. Hydrogeochemistry and statistical analysis applied to understand fluoride provenance in the Guarani Aquifer System, Southern Brazil. Environmental Geochemistry and Health, v. 35, n. 3, p. 391–403, 2013.

MELO GURGEL, P. et al. Ecotoxicological water assessment of an estuarine river from the Brazilian Northeast, potentially affected by industrial wastewater discharge. Science of the Total Environment, v. 572, p. 324-332, 2016.

MIKKONEN, H. G. et al. Evaluation of methods for managing censored results when calculating the geometric mean. Chemosphere, v. 191, p. 412-416, 2018.

OLIVEIRA JÚNIOR, A. et al. Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano (Sisagua): características, evolução e aplicabilidade. Epidemiologia e Serviços de Saúde, v. 28, n. 1, n. p., 2019.

SABINO, C. V. S.; LAGE, L. V.; ALMEIDA, K. C. B. Uso de métodos estatísticos robustos na análise ambiental, Engenharia Sanitária e Ambiental, v. 19 (spe), p. 87-94, 2014.

SHE, N. Analyzing censored water quality data using a non‐parametric approach. Journal of the American Water Resources Association, v. 33, n. 3, p. 615-624, 1997.

SINGH, A.; MAICHLE, R.; LEE, S. E. On the Computation of a 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations. Washington, DC: USEPA, 2006 (EPA/600/R-06/022).

STAPLES, C. et al. Distributions of concentrations of bisphenol A in North American and European surface waters and sediments determined from 19 years of monitoring data. Chemosphere, v. 201, p. 448-458, 2018.

STATSOFT. Statistica (data analysis software system), version 8.0. 2007.

TUKEY, J. W. Exploratory Data Analysis. Massachusetts: Addison-Wesley, 1977.

UMCES – University of Maryland Center for Environmental Science. Standard Operating Procedure for Determination of Total Dissolved Nitrogen (TDN) and Total Nitrogen (TN) in Fresh/Estuarine/Coastal Waters Using Alkaline Persulfate Digestion of Nitrogen to Nitrate and Measured Using Cadmium Reduction (References EPA 353.2, Standard Methods #4500-N C, 4500-NO3 F). Available from: https://www.umces.edu/sites/default/files/TDN%20Nitrate%20Method%202018-1_1.pdf. Accessed October 2020.

URVOY, M.; AUTRUSSEAU, F. Application of Grubbs' test for outliers do the detection of watermarks. In: ACM Workshop on Information Hiding and Multimedia Security, 2., 2014, Salzburg. Proceedings… Salzburg: ACM, 2014. p. 49-60.

USEPA – United States Environmental Protection Agency. 2018 Edition of the Drinking Water Standards and Health Advisories Tables. Washington, DC: Office of Research and Development, 2018.

USEPA – United States Environmental Protection Agency. EPA Method 612: Chlorinated Hydrocarbons.Cincinnati, Ohio: Office of Research and Development, 1984.

USEPA – United States Environmental Protection Agency. EPA Method 300.0: Determination of Inorganic Anions by Ion Chromatography. Cincinnati, Ohio: Office of Research and Development, 1993.

USEPA - United States Environmental Protection Agency. Pesticide Analytical Methods. Environmental Chemistry Methods (ECM). Available from: https://www.epa.gov/pesticide-analytical-methods/environmental-chemistry-methods-ecm-index-d. Accessed October 2020.

USEPA - United States Environmental Protection Agency. ProUCL Version 4.00.05 Technical Guide (Draft). Washington, DC: Office of Research and Development, 2010.

USEPA - United States Environmental Protection Agency. ProUCL Version 5.1 Technical Guide. Washington, DC: Office of Research and Development, 2016.

VON SPERLING, M.; VERBYLA, M. E.; OLIVEIRA, S. M. A. C. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners. London: IWA Publishing, 2020.

WHO. World Health Organization. 1,2-Dichloroethane in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. 2003. Available from: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/1-2-dichloroethane.pdf?sfvrsn=d7e6c0e0_4. Accessed May 2022.

WHO. World Health Organization. Trihalomethanes in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. 2004. Available from: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/trihalomethanes.pdf?sfvrsn=3d3a90e3_4. Accessed May 2022.

Publicado

2022-06-13

Como Citar

Gomes, F. B. R., Assunção, T. de O. G. de, Nicolau, G. B., Cordeiro, P. F., Castro, S. R., Pereira, R. de O., & Brandt, E. M. F. (2022). Ocorrência de substâncias químicas en sitemas de abastecimento de água do Brasil: Uma abordagem não-paramétrica para a análise estatística de dados do Sisagua. Ciência E Natura, 44, e24. https://doi.org/10.5902/2179460X63368

Edição

Seção

Estatística