This is an outdated version published on 2020-05-11. Read the most recent version.

Drying kinetics of Chinese garlic (Allium tuberosum) and its effect on color

Authors

DOI:

https://doi.org/10.5902/2179460X43424

Keywords:

Mathematical modeling, Quality, Post-harvest

Abstract

Dehydrated garlic is an important component both for culinary and medicinal purposes. However, there is a scarcity of studies that characterizes its drying kinetics. Thus, the objective of this work was to study the drying kinetics of Chinese garlic (Allium tuberosum), as well as to analyze the color effect resulting from each treatment. The garlic bulbs were cut into thin slices with a width of 2 and 3 mm, subjected to the drying air temperature of 35, 45, 55 and 70 °C in a mechanical dryer of a fixed layer with forced convection. Was performed a non-linear regression analysis by the Quasi-Newton method, for adjustment to 11 mathematical models to the experimental data of drying. The Midilli equation was the mathematical model that best characterized all the drying temperatures, for the experimental data. The diffusion coefficient presented values between 1.46 x 10-11 and 7.32 x 10-11 m2.s-1. The increase of the drying air temperature caused the dimming of the samples with a reduction of the L* coordinate and reduction of the yellow of the samples according to the coordinate results h*. The temperature of 70 °C was detrimental to the maintenance of the Chinese garlic coloration.

 

Downloads

Download data is not yet available.

Author Biographies

Paula de Almeida Rios, Universidade Federal de Lavras

Bacharela, mestra e doutoranda em Engenharia Agrícola pela Universidade Federal de Lavras (UFLA) na linha Processamento de Produtos Agrícolas.

CV: http://lattes.cnpq.br/5136008799044433

Ednilton Tavares de Andrade, Universidade Federal de Lavras

Bacharel em Engenharia Agrícola pela Universidade Federal de Lavras. Mestre e Doutor em Engenharia Agrícola pela Universidade Federal de Viçosa. Professor Titular na Universidade Federal de Lavras.

CV: http://lattes.cnpq.br/3989952107793554

Kátia Soares Moreira, Universidade Federal de Lavras

Bacharela em Engenharia Mecânica pelo CEFET-MG. Especialista em Engenharia de Segurança do Trabalho, Ergonomia e Meio Ambiente pela UFMG. Mestra em Resíduo Sólido Urbano pelo programa Tecnologia e Inovação Ambiental pela UFLA e doutoranda em Engenharia Agrícola, na linha de Processamento de Produtos Agrícolas.

CV: http://lattes.cnpq.br/7451678200389431

Filipe da Silva de Oliveira, Universidade Federal de Lavras

Bacharel em Engenharia de Agronegócios pela Universidade Federal Fluminense (UFF), no ano de 2017. Mestre e doutorando do programa de Engenharia Agrícola na Universidade Federal de Lavras (UFLA), na linha de pesquisa de Processamento de Produtos Agrícolas.

CV: http://lattes.cnpq.br/7759200760803219

Bárbara Lemes Outeiro Araújo, Universidade Federal de Lavras

Graduada em Química pela Universidade Federal de Lavras. Mestra e doutoranda em Engenharia Agrícola, na linha de pesquisa de Processamento de Produtos Agrícolas na Universidade Federal de Lavras.

CV: http://lattes.cnpq.br/2780453027778194

References

ALVES, G.E.; ISQUIERDO, E.P.; BORÉM, F.M.; SIQUEIRA, V.C.; OLIVEIRA, P.D.; ANDRADE, E.T.; Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Revista Coffee Science. 2013;8(2):238-247.

AMÂNCIO, M. E.; ANDRADE, E. T.; OLIVEIRA, F. S.; CARDOSO, D. B. Determinação do Equilíbrio Higroscópico e do calor isostérico do alho “Allium sativum”. In: XLVII Conbea; 2018; Brasília.

ANDRADE, E. T.; BÓREM, F. M. Simulação da Secagem de Café. In: BORÉM, F. M. editor. Pós-colheita do café. Lavras: UFLA, v.1, 2008, p.631.

ARAL, S.; BEŞE, A.V.; Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry. 2016; 210:(577-584).

ASSOCIAÇÃO NACIONAL DOS PRODUTORES DE ALHO, ANAPA, Revista Nosso alho, edição no. 30, maio/2019, Available from: http://anapa.com.br/wp-content/uploads/2019/08/nosso-alho-edicao-30-versao-web.pdf.

BROOKER, D.B.; BAKKER-ARKEMA, F.W.; HALL, C.W. Drying and storage of grains and oilseeds. Springer Science & Business Media, 1992.

CAGNIN, C.; LIMA, M.S.; SILVA, R.M.; PLÁCIDO, G.R.; SILVA, M.A.P.; FREITAS, B.S.M.; OLIVEIRA, D.E.C. Alho: cinética de secagem e propriedades termodinâmicas. Revista Bioscience Journal. 2017;33(4):905-913.

CLYDESDALE, F.M.; AHMED, E.M. Colorimetry-methodology and applications. Critical Reviews in Food Science & Nutrition. 1978;10(3):243-301.

CORRÊA, P. C.; MACHADO, P. F.; ANDRADE, E. T. Cinética de secagem e qualidade de grãos de milho-pipoca. Ciência e Agrotecnologia. 2001;25(1):134-142.

COSTA, L.M.; RESENDE, O.; GONÇALVES, D.N.; SOUSA, K.A.; Qualidade fisiológica das sementes de crambe submetidas a diferentes condições de secagem. Revista de Ciências Agrárias/Amazonian Journal of Agricultural and Environmental Sciences. 2018;60(3):235-240.

DOYMAZ, İ. Drying of Thyme (Thymus VulgarisL.) and Selection of a Suitable Thin-Layer Drying Model. Journal of Food Processing and Preservation. 2011;35(4):458–465.

FURTADO, G.D.F.; SILVA, F.D.; PORTO, A.G.; SANTOS, P.D. Secagem de polpa de seriguela pelo método de camada de espuma. Revista Brasileira de Produtos Agroindustriais. 2010;12(1):9-14.

GONELI, A.L.D.; SARATH, K.L.L.; ARAÚJO, W.D.; GANCEDO, R.; NASU, A.K. Cinética de secagem de folhas de erva baleeira (Cordia verbenacea DC.). Revista Brasileira de Plantas Medicinais. 2014a;16(2):434-443.

GONELI, A.L.D.; VIEIRA, M.D.; VILHASANTI, H.C.B.; GONÇALVES, A.A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa Agropecuária Tropical. 2014b;44(1):56-64.

INSTITUTO ADOLFO LUTZ. (1985). Normas Analíticas do Instituto Adolfo Lutz.

LIU, C.; MANAS, A.H,; GRIMI, N.; VOROBIERV, E.; Impact of microwave and air velocity on drying kinetics and rehydration of potato slices. World Academy of Science, Engineering and Technology, International Journal of Nutrition and Food Engineering. 2017;4(4):2017.

MADAMBA, P.S.; DRISCOLL RH & BUCKLE KA. Thin layer drying characteristics of garlic slices. Journal of Food Engineering. 1996;29:75-97.

MAITI, S.; GEETHA, K. A. Characterization, genetic improvement and cultivation of Chlorophytum borivilianum an important medicinal plant of India. Plant Genetic Resources. 2005;3(2):264-272.

MARTINAZZO, A.P.; CORRÊA, P.C.; RESENDE, O.; MELO, E.C. Análise e descrição mate¬mática da cinética de secagem de folhas de capim-li¬mão. Revista Brasileira de Engenharia Agrícola e Ambiental. 2007;11(3):301-306.

MOURA, R.L.; FIGUEIRÊDO, R.M.F. DE.; QUEIROZ, A.J.M. Processamento e caracterização físico-química de néctares goiaba-tomate. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2014;9(3):69-75.

NAIDU. M.M.; VEDASHREE, M.; SATAPATHY, P.; KHANUM; H.; RAMSAMY, R.; HEBBAR, H.U. Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food chemistry. 2016;192:849-856. RESENDE, O.; FERREIRA, L. U.; ALMEIDA, D. P. Modelagem matemática para descrição da cinética de secagem do feijão adzuki (Vigna angularis). Revista Brasileira de Produtos Agroindustriais. 2010(a);12(2):171-178.

RESENDE, O.; RODRIGUES, S.; SIQUEIRA, V. C.; ARCANJO, R.V. Cinética da secagem de clones de café (Coffea canephora Pierre) em terreiro de chão ba¬tido. Acta Amazônica. 2010(b);40(2):247-256.

RYAN, T. (2009). Estatística Moderna para Engenharia (1ª ed.). Elsevier.

SANDOVAL, J.R.; SANDOVAL, E.M.; ROSAS, M.E.; VELASCO, M.M. Color Analysis and Image Processing Applied in Agriculture. In Colorimetry and Image Processing. 2018:71-78.

SONMETE, M.H.; MENGES H.O.; ERTEKIN, C.; OZCAN, M.M. Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization. 2017;11(2):629-638.

SOUSA, A.D.; RIBEIRO, P.R.V.; CARMO, K.M.; ZOCOLO, G.J.; Drying kinetics and effect of air-drying temperature on chemical composition of Phyllanthus amarus and Phyllanthus niruri. Drying Technology. 2018;36(5):609-616.

TEIXEIRA, L.P.; ANDRADE, E.T.; SILVA, P. G. Determinação do equilíbrio higroscópico e do calor isostérico da polpa e da casca do abacaxi (Ananas comosus). Engevista. 2012;14(2):172-184.

YIN, M.; CHENG, W. Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat science. 2003;63:23-28.

ZHANG, B.; HUANG, W.; LI, J.; ZHAO, C.; FAN, S.; WU, J.; LIU, C. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International. 2014;62:326-343.

ZHANG, M.; CHEN. H.; MUJUMDAR, A.S,; TANG. J.; MIAO, S.; WANG. Y.; Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical reviews in food science and nutrition. 2017;57(6):1239-1255.

Downloads

Published

2020-05-11

Versions

How to Cite

Rios, P. de A., de Andrade, E. T., Moreira, K. S., de Oliveira, F. da S., & Araújo, B. L. O. (2020). Drying kinetics of Chinese garlic (Allium tuberosum) and its effect on color. Ciência E Natura, 42, e8. https://doi.org/10.5902/2179460X43424