Multiple solutions, multi-site, and parameter transfer to calibrate DHSVM hydrological model

Authors

DOI:

https://doi.org/10.5902/2179460X42826

Keywords:

Streamflow, Heuristics, Clustering search

Abstract

The application of hydrologic models often needs sets of input parameters related to environmental attributes which are not always available. This leads to the necessity of calibrating the input parameters. However, due to the non-linearity of the hydrologic phenomena, there may be multiple “best” solutions for the calibration. This paper proposes a method for calibrating the DHSVM hydrologic model using the concepts of multiple solutions, multi-site, and parameter transfer among catchments. Eight watersheds were calibrated, resulting in obtaining five sets of “best” parameters (clusters) for each one. Afterward, each watershed was modeled using the parameters of the other catchments in order to verify if the transfer of the calibrated parameters could promote satisfactory modeling of the streamflows. The results show that clusters calibrated for one watershed may be suitable for other catchments. Besdes, the calibrated parameters of the smaller catchments were satisfactory to simulate the streamflow of the bigger catchments. The proposed method can be useful in calibrating and extrapolating the input parameters to regions that do not have information about them.

Downloads

Download data is not yet available.

Author Biographies

Roberto Avelino Cecílio, Universidade Federal do Espírito Santo, Jeronimo Monteiro, ES,

Doutorado em Engenharia Agrícola pela Universidade Federal de Viçosa.

Helder de Amorim Mendes, Universidade Federal do Espírito Santo, Alegre, ES,

Doutorado em Ciências Florestais pela Universidade Federal do Espírito Santo. 

Sidney Sara Zanetti, Universidade Federal do Espírito Santo, Jeronimo Monteiro, ES,

Doutorado em Produção Vegetal Universidade Estadual do Norte Fluminense Darcy Ribeiro.

References

ALVARENGA, L. A. et al. Hydrological responses to climate changes in a headwater watershed. Ciência e Agrotecnologia, v. 40, n. 6, p. 647–657, 2016.

ALVARENGA, L. A. et al. Hydrologic impacts due to the changes in riparian buffer in a headwater watershed. CERNE, v. 23, n. 1, p. 95–102, 2017.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013.

ARNOLD, J. G. et al. Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Transactions of the ASABE, v. 58, n. 6, p. 1637–1660, 2015.

ARSENAULT, R. et al. Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration. Journal of Hydrologic Engineering, v. 19, n. 7, p. 1374–1384, 2014.

BAI, J.; SHEN, Z.; YAN, T. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China. Frontiers of Earth Science, v. 11, n. 3, p. 592–600, 2017.

BECKERS, J.; SMERDON, B.; WILSON, M. Review of hydrologic models for forest management and climate change applications in British Columbia and Alberta. 1. ed. Kamloops: FORREX, 2009.

BRIGHENTI, T.; BONUMÁ, N. B.; CHAFFE, P. Calibração hierárquica do modelo SWAT em uma bacia hidrográfica Catarinense. Revista Brasileira de Recursos Hídricos, v. 21, n. 1, p. 53–64, 25 fev. 2016.

CECÍLIO, R. A. et al. Hydrological modelling of tropical watersheds under low data availability. Research, Society and Development, v. 9, n. 5, p. e100953262, 2020.

CUARTAS, L. A. et al. Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: Model evaluation and advances in calibration using the new HAND terrain model. Journal of Hydrology, v. 462–463, n. 10, p. 15–27, 2012.

CUO, L. et al. Use of the distributed hydrology soil vegetation model to study road effects on hydrological processes in Pang Khum Experimental Watershed, northern Thailand. Forest Ecology and Management, v. 224, n. 1–5, p. 81–94, 2006.

CUO, L.; GIAMBELLUCA, T. W.; ZIEGLER, A. D. Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments. Hydrological Processes, v. 25, n. 15, p. 2405–2421, 2011.

DAGGUPATI, P. et al. A Recommended Calibration and Validation Strategy for Hydrologic and Water Quality Models. Transactions of the ASABE, v. 58, n. 6, p. 1705–1719, 2015.

DAS, T. et al. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology, v. 356, n. 1–2, p. 106–118, 2008.

DATTA, B. et al. Linking a Simulated Annealing Based Optimization Model with PHT3D Simulation Model for Chemically Reactive Transport Processes to Optimally Characterize Unknown Contaminant Sources in a Former Mine Site in Australia. Journal of Water Resource and Protection, v. 09, n. 05, p. 432–454, 2017.

DUAN, Q.; SOROOSHIAN, S.; GUPTA, H. V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, v. 28, n. 4, p. 1015–1031, abr. 1992.

EASTON, Z. M. et al. Hydrologic assessment of an urban variable source watershed in the northeast United States. Water Resources Research, v. 43, n. 3, p. W03413, 2007.

EDUARDO, E. N. et al. Hydrological simulation as subside for management of surface water resources at the Mortes River Basin. Ciência e Agrotecnologia, v. 40, n. 4, p. 390–404, 2016.

EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema brasileiro de classificação de solos. 3. ed. Brasília: EMBRAPA - SPI, 2013.

FARJAD, B. et al. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios. Water, v. 9, n. 10, p. 767, 2017.

FUKUNAGA, D. C. Estimação de vazão em bacias hidrográficas do sul do espírito santo usando o SWAT. [s.l.] Universidade Federal do Espírito Santo, 2012.

GEOBASES. Sistema integrado de bases geoespaciais do Estado do Espírito Santo. Disponível em: http://www.geobases.es.gov.br/. Acesso em: 7 jul. 2012.

GUPTA, H. V.; SOROOSHIAN, S.; YAPO, P. O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, v. 4, n. 2, p. 135–143, 1999.

HASSABALLAH, K. et al. Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia–Sudan). Hydrology and Earth System Sciences, v. 21, n. 10, p. 5217–5242, 2017.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Manual técnico da vegetação brasileira. 2. ed. Rio de Janeiro: INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, 2012.

KAN, G. et al. Computer Aided Numerical Methods for Hydrological Model Calibration: An Overview and Recent Development. Archives of Computational Methods in Engineering, p. 1–25, 2017.

KRUK, N. S. et al. Análise de Sensibilidade do Modelo Hidrológico Distribuído DHSVM aos Parâmetros de Vegetação. Revista Brasileira de Recursos Hídricos, v. 14, n. 1, p. 75–84, 2009.

LIU, Y. et al. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Science of The Total Environment, v. 601–602, p. 580–593, 2017.

MELO NETO, J. DE O. et al. Simulação hidrológica escalar com o modelo SWAT. Revista Brasileira de Recursos Hídricos, v. 19, n. 1, p. 177–188, 2014.

MENDES, H. DE A. Metodologia para calibração do modelo hidrológico DHSVM. [s.l.] Universidade Federal do Espírito Santo, 2016.

MENDES, H. DE A.; CECÍLIO, R. A.; ZANETTI, S. S. Ferramenta para calibração automática do modelo hidrológico DHSVM. Engenharia na Agricultura, v. 25, p. 272–282, 2017.

MOLINA-NAVARRO, E. et al. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environmental Modelling & Software, v. 93, p. 255–267, 2017.

MORIASI, D. N. et al. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, v. 50, n. 3, p. 885–900, 2007.

MORIASI, D. N. et al. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, v. 58, n. 6, p. 1763–1785, 2015.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, v. 10, n. 3, p. 282–290, 1970.

NGUYEN, H. H. et al. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia. Journal of Environmental Management, v. 202, p. 1–11, 2017.

NOORI, N.; KALIN, L. Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, v. 533, p. 141–151, 2016.

OLIVEIRA, K. D. Modelagem hidrológica da bacia do rio Jucu utilizando o modelo DHSVM. [s.l.] Universidade Federal do Espírito Santo, 2014.

PINIEWSKI, M.; OKRUSZKO, T. Multi-Site Calibration and Validation of the Hydrological Component of SWAT in a Large Lowland Catchment. In: ŚWIĄTEK, D.; OKRUSZKO, T. (Eds.). . Modelling of Hydrological Processes in the Narew Catchment. Berlin: Springer, 2011. p. 15–41.

PINTO, D. B. F. et al. Application of the Soil and Water Assessment Tool (SWAT) for sediment transport simulation at headwater watershed in Minas Gerais state, Brazil. Transactions of the ASABE, v. 56, n. 2, p. 697–709, 2013.

POTT, C. A.; FOHRER, N. Best management practices to reduce nitrate pollution in a rural watershed in Germany. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, v. 12, n. 6, p. 888, 2017.

QI, C.; GRUNWALD, S. GIS-based hydrologic modeling in the Sandusky Watershed using SWAT. Transactions of the ASAE, v. 48, n. 1, p. 169–180, 2005.

RESHMA, T. et al. Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm. Water Resources Management, v. 29, n. 13, p. 4589–4606, 7 out. 2015.

ROUHOLAHNEJAD, E. et al. A parallelization framework for calibration of hydrological models. Environmental Modelling and Software, v. 31, p. 28–36, 2012.

SANTOS, H. G. DOS et al. O novo mapa de solos do Brasil: legenda atualizada. Rio de Janeiro: EMBRAPA, 2011.

SHOURONG, W. et al. Numerical simulation experiments by nesting hydrology model DHSVM with regional climate model RegCM2 / China. Acta Meteorologica Sinica, v. 16, n. 4, p. 509–518, 2002.

SHRESTHA, M. K. et al. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agricultural Water Management, v. 175, p. 61–71, 2016.

SUMNER, N. R.; MICK FLEMING, P.; C. BATES, B. Calibration of a modified SFB model for twenty-five Australian catchments using simulated annealing. Journal of Hydrology, v. 197, n. 1–4, p. 166–188, 1997.

SUN, N. et al. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality. Hydrological Processes, v. 30, n. 25, p. 4779–4798, 15 dez. 2016.

SURFLEET, C. G.; SKAUGSET, A. E.; MCDONNELL, J. J. Uncertainty assessment of forest road modeling with the Distributed Hydrology Soil Vegetation Model (DHSVM). Canadian Journal of Forest Research, v. 40, n. 7, p. 1397–1409, 2010.

THANAPAKPAWIN, P. et al. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. Journal of Hydrology, v. 334, n. 1–2, p. 215–230, 2007.

TIGKAS, D.; CHRISTELIS, V.; TSAKIRIS, G. Comparative Study of Evolutionary Algorithms for the Automatic Calibration of the Medbasin-D Conceptual Hydrological Model. Environmental Processes, v. 3, n. 3, p. 629–644, 2016.

WANG, S. et al. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrology and Earth System Sciences, v. 16, n. 12, p. 4621–4632, 2012.

WESTRICK, K. J.; STORCK, P.; MASS, C. F. Description and Evaluation of a Hydrometeorological Forecast System for Mountainous Watersheds. Weather and Forecasting, v. 17, n. 2, p. 250–262, 2002.

WIGMOSTA, M. S. et al. The distributed hydrology soil vegetation model. In: SINGH, V. P.; FREVERT, D. K. (Eds.). . Mathematical models of small watershed hydrology and applications. Littleton: Water Resource Publications, 2002. p. 7–42.

WIGMOSTA, M. S.; VAIL, L. W.; LETTENMAIER, D. P. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, v. 30, n. 6, p. 1665–1679, 1994.

WOLDESENBET, T. A. et al. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Science of The Total Environment, v. 575, p. 724–741, 2017.

YAO, C.; YANG, Z. Parameters optimization on DHSVM model based on a genetic algorithm. Frontiers of Earth Science in China, v. 3, n. 3, p. 374–380, 2009.

YEN, H. et al. Computational Procedure for Evaluating Sampling Techniques on Watershed Model Calibration. Journal of Hydrologic Engineering, v. 20, n. 7, p. 04014080, 2015a.

YEN, H. et al. Assessment of model predictions and parameter transferability by alternative land use data on watershed modeling. Journal of Hydrology, v. 527, p. 458–470, 2015b.

ZHANG, L. et al. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Science of The Total Environment, v. 622–623, p. 1016–1028, 2018.

Downloads

Published

2021-02-01

How to Cite

Cecílio, R. A., Mendes, H. de A., & Zanetti, S. S. (2021). Multiple solutions, multi-site, and parameter transfer to calibrate DHSVM hydrological model. Ciência E Natura, 43, e7. https://doi.org/10.5902/2179460X42826

Issue

Section

Geo-Sciences