An Application of Generalized Additive Models of Location, Scale, and Shape (GAMLSS) to estimate the Eucalyptus Height

Tiago Almeida Oliveira, Sílvio Fernando Alves Xavier Júnior, Gláucia Amorim Faria, Beatriz Garcia Lopes, Ednário Mendonça Barbosa, Ana Patrícia Bastos Peixoto

Abstract


The Generalized Additive Models for Location, Scale, and Shape (GAMLSS) are a recent class of models that further flexibility
the distribution of the response variable. The regression analysis has been used to model biological phenomena, and its various
modalities have met the need for its use with precision. However, there are situations in which the adjustment of models with more
flexible assumptions in the specification of the distribution of the response variable becomes indispensable, thus justifying the use
of GAMLSS. The study of plant growth curves has full application in agricultural research; thus, it is crucial to know the habits of
growth and development of forest species is crucial for reforestation programs and in the most diverse researches. The study aimed
to model the growth of Eucalyptus through the adjusting of Generalized Additive Models for Location, Scale, and Shape, in order
to promote improvements on crop productivity. Considering all parameters of the independent variable (time) under GAMLSS
class modeling, the distribution model ST3 presented better results.


Keywords


Growth curves, Eucalyptus, GAMLSS, Probabilistic models.

Full Text:

PDF

References


Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. Em: Selected papers of hirotugu

akaike, Springer, pp. 199–213.

Eloy, R. A. O. (2016). Distribuição assimétrica t-student tipo 3: uma aplicação a delineamentos inteiramente casualizados. .

Fernandez, C., Steel, M. F. (1998). On bayesian modeling of fat tails and skewness. Journal of the American Statistical Association,

(441), 359–371.

Fumes, G., Demétrio, C. G. B., Villegas, C., Corrente, J. E., Bazzo, J. F. (2017). Growth curves for diameter and height using

mixed models: An application in eucalyptus seedling. Open Journal of Forestry, 7(04), 403.

Gonçalves, J. C., de Oliveira, A. D., de Pádua Chaves, S., Gomide, L. R., et al. (2017). Análise económica da rotaçâo florestal de

povoamentos de eucalipto utilizando a simulaçâo de monte carlo. Ciência Florestal, 27(4), 1339–1347.

HASTIE, R., T. ; TIBSHIRANI (1990). Generalized additive models. [s.1.]. Wiley Online Library.

Lopes, B. G. (2019). Classificação da variação, tamanho ótimo de parcela e curva de crescimento para experimentos com eucalipto.

Dissertação de Mestrado, Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira.

Maia, M. C. C., Resende, M. D. V., de Paiva, J. R., Cavalcanti, J. J. V., de Moura Barros, L. (2009). Seleção simultânea para

produção, adaptabilidade e estabilidade genotípicas em clones de cajueiro, via modelos mistos. Pesquisa Agropecuária Tropical,

(1), 43–50.

Melo, E., Calegario, N., Mendon A., Possato, E., Alves, J., Junior, M. (2017). Modelagem não linear da relaç ão hipsometrica e do

crescimento das arvores dominantes e codominantes de Eucalyptus sp. Ciência Florestal, 27(4), 1325-1338.

de Mendonça, A. R., Calegario, N., da Silva, G. F., de Souza, A. L., Trugilho, P. F., e Carvalho, S. P. C., Possato, E. L. (2014).

Modelagem da produção de sortimentos em povoamentos de eucalipto. CERNE, 20(4), 587-594.

Nelder, J. A., Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General),

(3), 370–384.

Paiva, C. S. M., Freire, D. M. C., Cecatti, J. G. (2008). Modelos aditivos generalizados para posição, escala e forma (gamlss) na

modelagem de curvas de referência. Rev bras ciênc saúde, 12(3), 289–310.

Prodan, M. (2013). Forest biometrics. Elsevier.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna,

Austria, URL https://www.R-project.org/.

Richards, F. (1959). A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290–301.

Rigby, R. A., Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 54(3), 507–554.

Schumacher, F. (1939). A new growth curve and its application to timber yield studies. Journal of forestry, 37(10), 819–20.

Schwarz, G., et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461–464.

Shapiro, S. S., Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.

Stasinopoulos, D. M., Rigby, R. A., et al. (2007). Generalized additive models for location scale and shape (gamlss) in r. Journal

of Statistical Software, 23(7), 1–46.

Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V., De Bastiani, F. (2017). Flexible regression and smoothing: using

GAMLSS in R. Chapman and Hall/CRC.

Thomas, G., Pereira, A. I. d. A., Lobos, C. M. V., et al. (2018). Analysis of a longitudinal multilevel experiment using gamlsss.

arXiv preprint arXiv:181003085.

Vendruscolo, D., Drescher, R., Souza, H., Moura, J. V. M., Mamore, F., Siqueira, T. (2015a). Estimativa da altura de eucalipto por

meio de regressão não linear e redes neurais artificiais. Revista Brasileira de Biometria, 33(4), 556-569.

Vendruscolo, D., Drescher, R., Souza, H., Silva, R. (2015b). Estratificação hipsometrica em plantios de eucaliptos na região

sudeste de Mato Grosso. Agrarian Academy, 2(3), 52-61.

Von Bertalanffy, L. (1951). General system theory, a new approach to unity of science. 5. conclusion. Human biology, 23(4), 337.

Voudouris, V., Gilchrist, R., Rigby, R., Sedgwick, J., Stasinopoulos, D. (2012). Modelling skewness and kurtosis with the bcpe

density in gamlss. Journal of Applied Statistics, 39(6), 1279–1293.

Zhang, D. d., Yan, D. h., Wang, Y. C., Lu, F., Liu, S. h. (2015). Gamlss-based nonstationary modeling of extreme precipitation in

beijing–tianjin–hebei region of china. Natural Hazards, 77(2), 1037–1053.




DOI: https://doi.org/10.5902/2179460X41710

Copyright (c) 2020 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.