Epoxidized corn oil polyol-based composites polyurethane flexible foams, preparation, and characterization

Authors

DOI:

https://doi.org/10.5902/2179460X39155

Keywords:

Epoxidized corn oil, Flexible foam polyurethane, Composites

Abstract

Corn oil is a renewable resource useful for the preparation of polyols used in syntheses of polyurethane. The goal was to synthesize composites flexible foams from corn oil polyol obtained by epoxidation and 4,4’ – methylenebis (phenyl isocyanate) and evaluate their properties. It was used as filler inorganic clay (from up 2 to 5% of silica fume, montmorillonite, and bauxite). The samples were analyzed by DSC, TG, compressive properties and SEM analyses. On DSC analysis was observed the negative temperature of the glass transition for all the samples, and thermally stable up to 200°C.  The composites flexible foams showed weakly resistance in the compressive strength and SEM test the specimens exhibited opened cells.

Downloads

Download data is not yet available.

Author Biographies

Simone Adriane Silva, Universidade Federal do Paraná, Curitiba, PR

Laboratório de Materiais Poliméricos, Department of Chemistry, Federal University of Parana, Curitiba, Brazil

Sônia Faria Zawadzki, Universidade Federal do Paraná, Curitiba, PR

Laboratório de Materiais Poliméricos, Department of Chemistry, Federal University of Parana, Curitiba, Brazil

Ronilson Vasconcelos Barbosa, Universidade Federal do Paraná, Curitiba, PR

Laboratório de Materiais Poliméricos, Department of Chemistry, Federal University of Parana, Curitiba, Brazil

Luiz Pereira Ramos, Universidade Federal do Paraná, Curitiba, PR

Centro de Pesquisa em Química Aplicada, Department of Chemistry, Federal University of Parana, Curitiba, Brazil

References

ANJANEYULU Y, MARAYYA R, RAO TH. Studies on Thio-substituted polyurethane form (T-PUF) as a new efficient separation medium for the removal of inorganic/ organic mercury from industrial effluents and solid wastes. Environ Pollut. 1993;79:283–91. doi: 0269-7491/92.

BELGACEM MN, GANDINI A. Monomers, Polymers and Composites. 1st ed. Oxford: Elsevier; 2008. 562 p. Available from: http://www.if.ufrrj.br/biolig/art_citados/Monomers, Polymers and Composites from Renewable Resources.pdf

BUTRUK B, BABIK P, MARCZAK B, CIACH T. Surface Endothelialization of Polyurethanes. Procedia Eng. 2013;59:126–32. doi: 10.1016/j.proeng.2013.05.101.

CAMPANELLA A, BALTANÁS MA. Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid heterogeneous reaction systems. Chem Eng J. 2006;118(3):141–52. doi: 10.1016/j.cej.2006.01.010.

CARDOSO GT, NETO SC, VECCHIA F. Rigid foam polyurethane (PU) derived from castor oil (Ricinus communis) for thermal insulation in roof systems. Front Archit Res. 2012;1(4):348–356. doi: 10.1016/j.foar.2012.09.005.

CHUA S-C, XU X, GUO Z. Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochem. 2012;47(10):1439–51. doi: 10.1016/j.procbio.2012.05.025.

CINELLI P, ANGUILLESI I, LAZZERI A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J. 2013;49(6):1174–84. doi: 10.1016/j.eurpolymj.2013.04.005.

CORCIONE CE, MAFFEZZOLI A. Glass transition in thermosetting clay-nanocomposite polyurethanes. Thermochim Acta. 2009;485(1–2):43–8. doi: 10.1016/j.tca.2008.12.009.

FASINA OO, CRAIG-SCHMIDT M, COLLEY Z, HALLMAN H. Predicting melting characteristics of vegetable oils from fatty acid composition. LWT - Food Sci Technol. 2008;41(8):1501–5. doi: 10.1016/j.lwt.2007.09.012.

FERRER MCC, BABB D, RYAN AJ. Characterization of polyurethane networks based on vegetable derived polyol. Polymer. 2008;49(15):3279–87. doi: 10.1016/j.polymer.2008.05.017.

HAZMI ASA, AUNG MM, ABDULLAH LC, SALLEH MZ, MAHMOOD MH. Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind Crops Prod. 2013;50:563–7. doi: 10.1016/j.indcrop.2013.08.003.

JIANG J, ZHANG Y, YAN L, JIANG P. Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes. Appl Surf Sci. 2012;258(17):6637–42. doi: 10.1016/j.apsusc.2012.03.095.

KANDANARACHCHI P, GUO A, PETROVIC Z. The hydroformylation of vegetable oils and model compounds by ligand modified rhodium catalysis. J Mol Catal A Chem. 2002;184(1–2):65–71. doi: 10.1016/S1381-1169(01)00420-4.

KOTWAL MS, NIPHADKAR PS, DESHPANDE SS, BOKADE VV, JOSHI PN. Transesterification of sunflower oil catalyzed by flyash-based solid catalysts. Fuel. 2009;88(9):1773–8. doi: 10.1016/j.fuel.2009.04.004.

MANO E, MENDES C. Introdução a Polímeros. 2nd ed. São Paulo: Edgard Bucher LTDA; 2004.

MIAO S, WANG P, SU Z, ZHANG S. Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater. 2014;10(4):1692–704. doi: 10.1016/j.actbio.2013.08.040.

MONTEAVARO LL, SILVA EO, COSTA APO, SAMIOS D, GERBASE AE, PETZHOLD CL. Polyurethane networks from formiated soy polyols: Synthesis and mechanical characterization. J Am Oil Chem Soc. 2005;82(5):365–71. doi: 10.1007/s11746-005-1079-0.

MUKHOPAHYAY M, NORONHA SB, SURAISHKUMAR GK. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour Technol. 2007;98(9):1781–7. doi: 10.1016/j.biortech.2006.06.025.

NARINE SS, KONG X, BOUZIDI L, SPORNS P. Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II. Foams. J Am Oil Chem Soc. 2007 Dec 12;84(1):65–72. doi: 10.1007/s11746-006-1008-2.

RATHORE V, NEWALKAR BL, BADONI RP. Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy Sustain Dev. 2016;31:24–49. doi: 10.1016/j.esd.2015.11.003.

REZENDE SM de, SOARES BG, COUTINHO FMB, REIS SCM dos, REID MG, LACHTER Elizabeth R, NASCIMENTO RSV. Aplicação de Resinas Sulfônicas como Catalisadores em Reações de Transesterificação de Óleos Vegetais. Polímeros. 2005;15(3):186–92.

SEMENZATO S, LORENZETTI A, MODESTI M, UGEL E, HRELJA D, BESCO S, et al. A novel phosphorus polyurethane FOAM/montmorillonite nanocomposite: Preparation, characterization and thermal behaviour. Appl Clay Sci. 2009;44(1–2):35–42. doi: 10.1016/j.clay.2009.01.003.

SHARMA V, KUNDU PP. Condensation polymers from natural oils. Prog Polym Sci. 2008;33(12):1199–215. doi: 10.1016/j.progpolymsci.2008.07.004.

SINHA RAY S, BOUSMINA M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci. 2005;50(8):962–1079. doi: 10.1016/j.pmatsci.2005.05.002.

SONNENSCHEIN MF, WENDT BL. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships. Polymer. 2013;54(10):2511–20. doi: 10.1016/j.polymer.2013.03.020.

SOUZA VHR, SILVA SA, RAMOS LP, ZAWADZKI SF. Synthesis and characterization of polyols derived from corn oil by epoxidation and ozonolysis. JAOCS, J Am Oil Chem Soc. 2012;89(9). doi: 10.1007/s11746-012-2063-5.

SUN S, KE X, CUI L, YANG G, BI Y, SONG F, et al. Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind Crops Prod. 2011;33(3):676–82. doi: 10.1016/j.indcrop.2011.01.002.

TAKEICHI T, KANO T, AGAG T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer. 2005;46(26):12172–80. doi: 10.1016/j.polymer.2005.10.088.

WIRPSZA Z, POLYURETHANES: Chemistry, Technology and Applications. 1st ed. London: Ellis Horwood, 1993. ZHANG C, MADBOULY SA. Bio-Based Plant Oil Polymers and Composites. In: Bio-based Plant Oil Polymers and Composites. Elsevier Inc.; 2016. p. 19–35. doi: 10.1016/B978-0-323-35833-0.00002-5.

Downloads

Published

2019-11-14

How to Cite

Silva, S. A., Zawadzki, S. F., Barbosa, R. V., & Ramos, L. P. (2019). Epoxidized corn oil polyol-based composites polyurethane flexible foams, preparation, and characterization. Ciência E Natura, 41, e44. https://doi.org/10.5902/2179460X39155

Issue

Section

Chemistry