Plants from the Brazilian Cerrado with antimycobacterial effect

Authors

DOI:

https://doi.org/10.5902/2179460X35764

Keywords:

Cerrado, Public Health, Tuberculosis

Abstract

Tuberculosis constitutes a serious public health problem because it has multi-resistant forms that require treatment that is both difficult and extensive. There is a need to develop new antimycobacterial compounds, and plants represent a source of therapeutic resources. This study analyzed antimycobacterial action in eight extracts from plants found in the Brazilian Cerrado. The results showed significant inhibitory concentrations in relation to Mycobacterium tuberculosis, especially from the extracts of Apuleia molaris and Ouratea spectabilis, both of which presented reduced cytotoxic effects. Fractionation revealed a hexane fraction of A. molaris with significant and promising activity regarding future in vivo assays.

Downloads

Download data is not yet available.

Author Biographies

Franciano Dias Pereira Cardoso, Universidade Federal de Tocantins, Palmas, TO

Mestrado em Ciências do Ambiente, Universidade Federal de Tocantins, Palmas, TO

Marcio Galdino dos Santos, Universidade Federal do Tocantins, Porto Nacional, TO

Professor associado da Fundação Universidade Federal do Tocantins, Campus Porto Nacional

Sergio de Albuquerque, Universidade de São Paulo, Ribeirão Preto, SP

Professor Titular da Universidade de São Paulo

Zumira Aparecida Carneiro, Centro Universitário Estácio, Ribeirão Preto, SP

Professora titular em parasitologia nos cursos de medicina e enfermagem do Centro Universitário Estácio de Ribeirão Preto

Aparecido Osdimir Bertolin, Universidade Federal do Tocantins, Porto Nacional, TO

Professor na Universidade Federal do Tocantins, Porto Nacional, TO

References

ALFFENAAR JWC; AKKERMAN OW; ANTHONY RM; TIBERI S; HEYSELL S; GROBUSCH MP; ET AL. Individualizing management of extensively drug-resistant tuberculosis: diagnostics, treatment, and biomarkers. Expert Rev. Anti. Infect. Ther. Taylor & Francis; 2017;15(1):11–21. doi: 10.1080/14787210.2017.1247692

BOTTGER EC. The ins and outs of Mycobacterium tuberculosis drug susceptibility testing. Clin Microbiol Infect. 2011;17(8):1128–34. doi: 10.1111/j.1469-0691.2011.03551.x

BRANDÃO GC; KROON EG; SANTOS JR; STEHMANN JR; LOMBARDI JL; OLIVEIRA AB. Antiviral activity of plants occurring in the State of Minas Gerais (Brazil): Part III. J. Chem. Pharm. Res. 2011;3(4):223–36.

CANTRELL C; FRANZBLAU S; FISCHER N. Antimycobacterial Plant Terpenoids. Planta Med. 2001;67(08):685–94. doi: 10.1055/s-2001-18365

D’ARC FELICIO J; ROSSI MH; PARK HR; GONÇALEZ E; BRAGGIO MM; DAVID JM; ET AL. Biflavonoids from Ouratea multiflora. Fitoterapia. 2001;72(4):453–5.

FIDELIS QC; RIBEIRO TAN; ARAÚJO MF; DE CARVALHO MG. Ouratea genus: Chemical and pharmacological aspects. Brazilian J. Pharmacogn. 2014;24(1):1–19.

FORZZA RC; LEITMAN PM; COSTA A; CARVALHO JR AA; PEIXOTO AL; WALTER BMT; ET AL. Catálago de plantas e fungos do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, editor. J. Chem. Inf. Model. Rio de Janeiro; 2010.

FRANÇOSO RD; BRANDÃO R; NOGUEIRA CC; SALMONA YB; MACHADO RB; COLLI GR. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat. e Conserv. 2015;13(1):35–40.

FRANZBLAU SG; WITZIG RS; MCLAUGHLIN JC; TORRES P; MADICO G; HERNANDEZ A; ET AL. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36(2):362–6.

GANGOUÉ-PIÉBOJI J; PEGNYEMB DE; NIYITEGEKA D; NSANGOU A; EZE N; MINYEM C; ET AL. The in-vitro antimicrobial activities of some medicinal plants from Cameroon. Ann. Trop. Med. Parasitol. 2006;100(3):237–43. doi: 10.1179/136485906X86365

JEPSON W. A disappearing biome? Reconsidering land-cover change in the Brazilian savanna. Geogr. J. 2005;171(2):99–111.

KUETE V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010;76(14):1479–91.

MECINA GF; SANTOS VHM; DOKKEDAL AL; SALDANHA LL; SILVA LP; SILVA RMG. Phytotoxicity of extracts and fractions of Ouratea spectabilis (Mart. ex Engl.) Engl. (Ochnaceae). South African J. Bot. South African Association of Botanists; 2014;95:174–80. doi: 10.1016/j.sajb.2014.10.002

MITTERMEIER RA; VAN DIJK PP; RHODIN AGJ; NASH SD. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions. Chelonian Conserv. Biol. 2004;14(1):200. doi: 10.2744/ccab-14-01-2-10.1

MOLINA-SALINAS GM; BÓRQUEZ J; ARDILES A; SAID-FERNÁNDEZ S; LOYOLA LA; YAM-PUC A; ET AL. Bioactive metabolites from the Andean flora. Antituberculosis activity of natural and semisynthetic azorellane and mulinane diterpenoids. Phytochem. Rev. Elsevier B.V.; 2010;9(2):271–8. doi: 10.1007/s11101-010-9162-4

MOSMANN T. Rapid Colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods. 1983;65(1–2):55–63.

MUÑOZ V; SAUVAIN M; BOURDY G; CALLAPA J; BERGERON S; ROJAS I; ET AL. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. J. Ethnopharmacol. 2000;69(2):127–37. doi: 10.1016/S0378-8741(99)00148-8

MYERS N; MITTERMEIER RA; MITTERMEIER CG; DA FONSECA GAB; KENT J. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853–8. doi: 10.1038/35002501

NAYYAR A; JAIN R. Recent Advances in New Structural Classes of Anti-Tuberculosis Agents. Curr. Med. Chem. 2005;12(16):1873–86. doi: 10.2174/0929867054546654

NOVAES P; MOLINILLO JMG; VARELA RM; MACÍAS FA. Ecological phytochemistry of Cerrado (Brazilian savanna) plants. Phytochem. Rev. 2013;12(4):839–55.

PANDIT R; SINGH PK; KUMAR V. Natural Remedies against Multi-Drug Resistant Mycobacterium tuberculosis. J. Tuberc. Res. 2015;03(04):171–83. doi: 10.4236/jtr.2015.34024

PARIDA SK; AXELSSON-ROBERTSON R; RAO M V.; SINGH N; MASTER I; LUTCKII A; ET AL. Totally drug-resistant tuberculosis and adjunct therapies. J. Intern. Med. 2015;277(4):388–405.

PAULI GF; CASE RJ; INUI T; WANG Y; CHO S; FISCHER NH; ET AL. New perspectives on natural products in TB drug research. Life Sci. 2005;78(5):485–94.

RUPPELT BM; PEREIRA EF; GONÇALVES LC; PEREIRA NA. Pharmacological screening of plants recommended by folk medicine as anti-snake venom--I. Analgesic and anti-inflammatory activities. Mem. Inst. Oswaldo Cruz. 1991. p. 203–5.

SANDGREN A; STRONG M; MUTHUKRISHNAN P; WEINER BK; CHURCH GM; MURRAY MB. Tuberculosis Drug Resistance Mutation Database. PLoS Med. Public Library of Science; 2009;6(2):e1000002. doi: 10.1371/journal.pmed.1000002

SANO EE; ROSA R; BRITO JLS; FERREIRA LG; SANO EE; ROSA R; ET AL. Land cover mapping of the tropical savanna region in Brazil. Env. Monit Assess. 2010;166:113–24. doi: 10.1007/s10661-009-0988-4

SANTHOSH R; SURIYANARAYANAN B. Plants: A Source for New Antimycobacterial Drugs. Planta Med. 2013;80(01):9–21. doi: 10.1055/s-0033-1350978

SILVA LN; TRENTIN DDS; ZIMMER KR; TRETER J; BRANDELLI CLC; FRASSON AP; ET AL. Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation. Pharm. Biol. 2015;53(3):464–8.

SIMÕES CMO; SCHENKEL EP; GOSMANN G; MELLO JCP; MENTZ LA; PETROVICK PR. Farmacognosia: da planta ao medicamento. 6th ed. Porto Alegre/Florianópolis: UFRGS, UFSC; 2007.

SIMONI IC; FELICIO JD; GONÇALEZ E; ROSSI MH. Comunicação Spectabilis ( Ochnaceae ) Em Células De Córnea De Coelho Sirc. 2002;95–7.

SINGH B; JAIN M; SINGH S V.; DHAMA K; ASERI GK; JAIN N; ET AL. Plants as future source of anti-mycobacterial molecules and armour for fighting drug resistance. Asian J. Anim. Vet. Adv. 2015;10(9):443–60.

SINGH V; MIZRAHI V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov. Today. Elsevier Ltd; 2017;22(3):503–9. doi: 10.1016/j.drudis.2016.09.010

SOUZA REIS AR; DE FREITAS AD; MARTINS LEAO NV; DOS SANTOS FILHO BG. Morphological aspects of fruits, seeds, and seedlings, and anatomy of seedlings of apuleia molaris spruce ex benth. J. Seed Sci. 2016;38(2):118–28.

SPERA SA; GALFORD GL; COE MT; MACEDO MN; MUSTARD JF. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016;22(10):3405–13.

TIBERI S; BUCHANAN R; CAMINERO JA; CENTIS R; ARBEX MA; SALAZAR M; ET AL. The challenge of the new tuberculosis drugs. Press. Medicale. Elsevier Masson SAS; 2017a;46(2):e41–51. doi: 10.1016/j.lpm.2017.01.016

TIBERI S; CARVALHO ACC; SULIS G; VAGHELA D; RENDON A; MELLO FC D. Q; ET AL. The cursed duet today: Tuberculosis and HIV-coinfection. Press. Medicale. Elsevier Masson SAS; 2017b;46(2):e23–39. doi: 10.1016/j.lpm.2017.01.017

VALADARES YM; OLIVEIRA AB DE; CÔRTES SF; LOMBARDI JA; BRAGA FC. Atividade vasodilatadora in vitro de espécies de Ouratea (Ochnaceae) e de frações de Ouratea Semiserrata (Mart.) Engl. Rev. Bras. Ciências Farm. 2003;39(1). doi: 10.1590/S1516-93322003000100009

WHO. Global Tuberculosis Report 2016. Cdc 2016. 2016;(Global TB Report 2016):214.

WINK M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 2008;9(10):996–1009.

WOLLENWEBER E; H. DIETZ V. Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry. 1981;20(5):869–932.

Downloads

Published

2019-11-12

How to Cite

Cardoso, F. D. P., dos Santos, M. G., Albuquerque, S. de, Carneiro, Z. A., & Bertolin, A. O. (2019). Plants from the Brazilian Cerrado with antimycobacterial effect. Ciência E Natura, 41, e37. https://doi.org/10.5902/2179460X35764

Issue

Section

Biology (Plant-microorganism Interaction)